metadata
language: en
license: mit
library_name: timm
tags:
- image-classification
- resnet34
- svhn
datasets: svhn
metrics:
- accuracy
model-index:
- name: resnet34_svhn
results:
- task:
type: image-classification
dataset:
name: SVHN
type: svhn
metrics:
- type: accuracy
value: 0.9626229256299939
Model Card for Model ID
This model is a small resnet34 trained on svhn.
- Test Accuracy: 0.9626229256299939
- License: MIT
How to Get Started with the Model
Use the code below to get started with the model.
import detectors
import timm
model = timm.create_model("resnet34_svhn", pretrained=True)
Training Data
Training data is svhn.
Training Hyperparameters
config:
scripts/train_configs/svhn.json
model:
resnet34_svhn
dataset:
svhn
batch_size:
128
epochs:
300
validation_frequency:
5
seed:
1
criterion:
CrossEntropyLoss
criterion_kwargs:
{}
optimizer:
SGD
lr:
0.01
optimizer_kwargs:
{'momentum': 0.9, 'weight_decay': 0.0005}
scheduler:
MultiStepLR
scheduler_kwargs:
{'gamma': 0.1, 'milestones': [75, 100, 150, 225]}
debug:
False
Testing Data
Testing data is svhn.
This model card was created by Eduardo Dadalto.