File size: 19,650 Bytes
e8156cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:800
- loss:TripletLoss
base_model: sentence-transformers/all-mpnet-base-v2
datasets: []
widget:
- source_sentence: What is the advice given about the use of color in dataviz?
  sentences:
  - Don't use color if they communicate nothing.
  - Four problems with Pie Charts are detailed in a guide by iCharts.net.
  - Always use bright colors for highlighting important data.
- source_sentence: What is the effect of a large sample size on the use of jitter
    in a boxplot?
  sentences:
  - A large sample size will enhance the use of jitter in a boxplot.
  - If you have a large sample size, using jitter is not an option anymore since dots
    will overlap, making the figure uninterpretable.
  - It is a good practice to use small multiples.
- source_sentence: What is a suitable usage of pie charts in data visualization?
  sentences:
  - If you have a single series to display and all quantitative variables have the
    same scale, then use a barplot or a lollipop plot, ranking the variables.
  - Pie charts rapidly show parts to a whole better than any other plot. They are
    most effective when used to compare parts to the whole.
  - Pie charts are a flawed chart which can sometimes be justified if the differences
    between groups are large.
- source_sentence: Where can a note on long labels be found?
  sentences:
  - https://www.data-to-viz.com/caveat/hard_label.html
  - A pie chart can tell a story very well; that all the data points as a percentage
    of the whole are very similar.
  - https://twitter.com/r_graph_gallery?lang=en
- source_sentence: What is the reason pie plots can work as well as bar plots in some
    scenarios?
  sentences:
  - Pie plots can work well for comparing portions a whole or portions one another,
    especially when dealing with a single digit count of items.
  - https://www.r-graph-gallery.com/line-plot/ and https://python-graph-gallery.com/line-chart/
  - Thanks for your comment Tom, I do agree with you.
pipeline_tag: sentence-similarity
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("edubm/vis-sim-triplets-mpnet")
# Run inference
sentences = [
    'What is the reason pie plots can work as well as bar plots in some scenarios?',
    'Pie plots can work well for comparing portions a whole or portions one another, especially when dealing with a single digit count of items.',
    'Thanks for your comment Tom, I do agree with you.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 800 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 15.26 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 23.25 tokens</li><li>max: 306 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 16.38 tokens</li><li>max: 57 tokens</li></ul> |
* Samples:
  | anchor                                                                                                 | positive                                                                                                                                              | negative                                                                                                     |
  |:-------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|
  | <code>Did you ever figure out a solution to the error message problem when using your own data?</code> | <code>Yes, a solution was found. You have to add ' group = name ' inside the ' ggplot(aes())' like ggplot(aes(x=year, y=n,group=name)).</code>        | <code>I recommend sorting by some feature of the data, instead of in alphabetical order of the names.</code> |
  | <code>Why should you consider reordering your data when building a chart?</code>                       | <code>Reordering your data can help in better visualization. Sometimes the order of groups must be set by their features and not their values.</code> | <code>You should reorder your data to clean it.</code>                                                       |
  | <code>What is represented on the X-axis of the chart?</code>                                           | <code>The price ranges cut in several 10 euro bins.</code>                                                                                            | <code>The number of apartments per bin.</code>                                                               |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
      "triplet_margin": 5
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 200 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 14.99 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 22.38 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 16.08 tokens</li><li>max: 58 tokens</li></ul> |
* Samples:
  | anchor                                                                                                        | positive                                                                                                                                                                         | negative                                                                                             |
  |:--------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------|
  | <code>What can be inferred about group C and B from the jittered boxplot?</code>                              | <code>Group C has a small sample size compared to the other groups. Group B seems to have a bimodal distribution with dots distributed in 2 groups: around y=18 and y=13.</code> | <code>Group C has the largest sample size and Group B has dots evenly distributed.</code>            |
  | <code>What can cause a reduction in computing time and help avoid overplotting when dealing with data?</code> | <code>Plotting only a fraction of your data can cause a reduction in computing time and help avoid overplotting.</code>                                                          | <code>Plotting all of your data is the best method to reduce computing time.</code>                  |
  | <code>How can area charts be used for data visualization?</code>                                              | <code>Area charts can be used to give a more general overview of the dataset, especially when used in combination with small multiples.</code>                                   | <code>Area charts make it obvious to spot a particular group in a crowded data visualization.</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
      "triplet_margin": 5
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Training Loss | loss   |
|:-----:|:----:|:-------------:|:------:|
| 0.02  | 1    | 4.8436        | 4.8922 |
| 0.04  | 2    | 4.9583        | 4.8904 |
| 0.06  | 3    | 4.8262        | 4.8862 |
| 0.08  | 4    | 4.8961        | 4.8820 |
| 0.1   | 5    | 4.9879        | 4.8754 |
| 0.12  | 6    | 4.8599        | 4.8680 |
| 0.14  | 7    | 4.9098        | 4.8586 |
| 0.16  | 8    | 4.8802        | 4.8496 |
| 0.18  | 9    | 4.8797        | 4.8392 |
| 0.2   | 10   | 4.8691        | 4.8307 |
| 0.22  | 11   | 4.9213        | 4.8224 |
| 0.24  | 12   | 4.88          | 4.8145 |
| 0.26  | 13   | 4.9131        | 4.8071 |
| 0.28  | 14   | 4.7596        | 4.8004 |
| 0.3   | 15   | 4.8388        | 4.7962 |
| 0.32  | 16   | 4.8434        | 4.7945 |
| 0.34  | 17   | 4.8726        | 4.7939 |
| 0.36  | 18   | 4.8049        | 4.7943 |
| 0.38  | 19   | 4.8225        | 4.7932 |
| 0.4   | 20   | 4.7631        | 4.7900 |
| 0.42  | 21   | 4.7841        | 4.7847 |
| 0.44  | 22   | 4.8077        | 4.7759 |
| 0.46  | 23   | 4.7731        | 4.7678 |
| 0.48  | 24   | 4.7623        | 4.7589 |
| 0.5   | 25   | 4.8572        | 4.7502 |
| 0.52  | 26   | 4.843         | 4.7392 |
| 0.54  | 27   | 4.6826        | 4.7292 |
| 0.56  | 28   | 4.7584        | 4.7180 |
| 0.58  | 29   | 4.7281        | 4.7078 |
| 0.6   | 30   | 4.7491        | 4.6982 |
| 0.62  | 31   | 4.7501        | 4.6897 |
| 0.64  | 32   | 4.6219        | 4.6826 |
| 0.66  | 33   | 4.7323        | 4.6768 |
| 0.68  | 34   | 4.5499        | 4.6702 |
| 0.7   | 35   | 4.7682        | 4.6648 |
| 0.72  | 36   | 4.6483        | 4.6589 |
| 0.74  | 37   | 4.6675        | 4.6589 |
| 0.76  | 38   | 4.7389        | 4.6527 |
| 0.78  | 39   | 4.7721        | 4.6465 |
| 0.8   | 40   | 4.6043        | 4.6418 |
| 0.82  | 41   | 4.7894        | 4.6375 |
| 0.84  | 42   | 4.6134        | 4.6341 |
| 0.86  | 43   | 4.6664        | 4.6307 |
| 0.88  | 44   | 4.5249        | 4.6264 |
| 0.9   | 45   | 4.7045        | 4.6227 |
| 0.92  | 46   | 4.7231        | 4.6198 |
| 0.94  | 47   | 4.7011        | 4.6176 |
| 0.96  | 48   | 4.5876        | 4.6159 |
| 0.98  | 49   | 4.7567        | 4.6146 |
| 1.0   | 50   | 4.6706        | 4.6138 |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification}, 
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->