Edit model card

LlaMa 2 7B Python Coder using Unsloth πŸ‘©β€πŸ’»

LlaMa-2 7b fine-tuned on the python_code_instructions_18k_alpaca Code instructions dataset by using the library Unsloth.

Pretrained description

Llama-2

Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.

Model Architecture Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety

Training data

python_code_instructions_18k_alpaca

The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.

Training hyperparameters

SFTTrainer arguments

# Model Parameters
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

# LoRA Parameters
r = 16
target_modules = ["gate_proj", "up_proj", "down_proj"]
#target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",],
lora_alpha = 16

# Training parameters
learning_rate = 2e-4
weight_decay = 0.01
#Evaluation
evaluation_strategy="no"
eval_steps= 50

# if training in epochs
#num_train_epochs=2
#save_strategy="epoch"

# if training in steps
max_steps = 1500
save_strategy="steps"
save_steps=500

logging_steps=100
warmup_steps = 10
warmup_ratio=0.01
batch_size = 4
gradient_accumulation_steps = 4
lr_scheduler_type = "linear"
optimizer = "adamw_8bit"
use_gradient_checkpointing = True
random_state = 42

Framework versions

  • Unsloth

Example of usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "edumunozsala/unsloth-llama-2-7B-python-coder"

# Load the entire model on the GPU 0
device_map = {"": 0}

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, torch_dtype=torch.float16, 
                                             device_map="auto")

instruction="Write a Python function to display the first and last elements of a list."
input=""

prompt = f"""### Instruction:
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.

### Task:
{instruction}

### Input:
{input}

### Response:
"""

input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
# with torch.inference_mode():
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.3)

print(f"Prompt:\n{prompt}\n")
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")

Citation

@misc {edumunozsala_2023,
    author       = { {Eduardo MuΓ±oz} },
    title        = { unsloth-llama-2-7B-python-coder },
    year         = 2024,
    url          = { https://huggingface.co/edumunozsala/unsloth-llama-2-7B-python-coder },
    publisher    = { Hugging Face }
}
Downloads last month
27
Safetensors
Model size
6.74B params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train edumunozsala/unsloth-llama-2-7B-python-coder