eeshclusive's picture
Training complete
254772e
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-finetuned-ner
    results: []

bert-base-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3788
  • Precision: 0.5395
  • Recall: 0.5234
  • F1: 0.5313
  • Accuracy: 0.9307

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 121 0.4099 0.2393 0.2383 0.2388 0.8962
No log 2.0 242 0.3394 0.4340 0.3220 0.3697 0.9180
No log 3.0 363 0.2952 0.5017 0.4170 0.4555 0.9271
No log 4.0 484 0.3419 0.5301 0.4 0.4559 0.9284
0.321 5.0 605 0.3269 0.5354 0.4723 0.5019 0.9313
0.321 6.0 726 0.3382 0.5091 0.4780 0.4931 0.9285
0.321 7.0 847 0.3528 0.5489 0.5177 0.5328 0.9315
0.321 8.0 968 0.3623 0.5446 0.5191 0.5316 0.9306
0.0997 9.0 1089 0.3706 0.5225 0.5262 0.5244 0.9283
0.0997 10.0 1210 0.3788 0.5395 0.5234 0.5313 0.9307

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1