Edit model card

Introduction

Our Model is fine-tuned on Llama-2 7B model on Text-2-SQL Dataset based on Alpaca format described by Stanford. We have used QLora, Bits&Bytes, Accelerate and Transformers Library to implement PEFT concept. For more information, please visit github.com/akshayhedaoo1

Inference

!pip install transformers accelerate xformers bitsandbytes

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("ekshat/Llama-2-7b-chat-finetune-for-text2sql")

# Loading model in 4 bit precision
model = AutoModelForCausalLM.from_pretrained("ekshat/Llama-2-7b-chat-finetune-for-text2sql", load_in_4bit=True)

context = "CREATE TABLE head (name VARCHAR, born_state VARCHAR, age VARCHAR)"
question = "List the name, born state and age of the heads of departments ordered by age."

prompt = f"""Below is an context that describes a sql query, paired with an question that provides further information. Write an answer that appropriately completes the request.
### Context:
{context}
### Question:
{question}
### Answer:"""

pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
result = pipe(prompt)
print(result[0]['generated_text'])

Model Information

  • model_name = "NousResearch/Llama-2-7b-chat-hf"

  • dataset_name = "ekshat/text-2-sql-with-context"

QLoRA parameters

  • lora_r = 64

  • lora_alpha = 16

  • lora_dropout = 0.1

BitsAndBytes parameters

  • use_4bit = True

  • bnb_4bit_compute_dtype = "float16"

  • bnb_4bit_quant_type = "nf4"

  • use_nested_quant = False

Training Arguments parameters

  • num_train_epochs = 1

  • fp16 = False

  • bf16 = False

  • per_device_train_batch_size = 8

  • per_device_eval_batch_size = 4

  • gradient_accumulation_steps = 1

  • gradient_checkpointing = True

  • max_grad_norm = 0.3

  • learning_rate = 2e-4

  • weight_decay = 0.001

  • optim = "paged_adamw_32bit"

  • lr_scheduler_type = "cosine"

  • max_steps = -1

  • warmup_ratio = 0.03

  • group_by_length = True

  • save_steps = 0

  • logging_steps = 25

SFT parameters

  • max_seq_length = None

  • packing = False

Downloads last month
249
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ekshat/Llama-2-7b-chat-finetune-for-text2sql