metadata
language:
- el
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Medium El - Greek One
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
args: 'config: el, split: test'
metrics:
- name: Wer
type: wer
value: 13.976597325408619
Whisper Medium El - Greek One
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4707
- Wer: 13.9766
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0036 | 10.01 | 1000 | 0.4461 | 15.9082 |
0.0001 | 20.02 | 2000 | 0.4250 | 14.5245 |
0.0 | 31.0 | 3000 | 0.4526 | 14.1902 |
0.0 | 41.01 | 4000 | 0.4657 | 14.1252 |
0.0 | 52.0 | 5000 | 0.4707 | 13.9766 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2