See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
chat_template: llama3
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: ./hf_data/function_not_used_no_unicode_7500.jsonl
type: sharegpt
conversation: llama-3
- path: ./hf_data/function_used_training_shuffled_no_unicode_without_examples_corrected_updated.jsonl
type: sharegpt
conversation: llama-3
- path: ./hf_data/parallel_data_training_no_unicode_updated.jsonl
type: sharegpt
conversation: llama-3
- path: ./hf_data/parallel_data_training_single_function.jsonl
type: sharegpt
conversation: llama-3
- path: ./hf_data/function_not_used_new.jsonl
type: sharegpt
conversation: llama-3
- path: ./hf_data/lambda_dataset_100.jsonl
type: sharegpt
conversation: llama-3
- path: ./hf_data/function_not_used_new_more.jsonl
type: sharegpt
conversation: llama-3
dataset_prepared_path: last_run_prepared
val_set_size: 0.025
output_dir: ../empower-functions-llama3-1-8b-with-more-neg-5
hub_model_id: empower-dev-staging/empower-functions-llama3-1-8b-with-more-neg-5
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
eval_batch_size: 2
eval_max_new_tokens: 256
eval_steps: 0.1
eval_table_size: null
saves_per_epoch: 4
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
empower-functions-llama3-1-8b-with-more-neg-5
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0968
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9991 | 0.0033 | 1 | 0.9484 |
0.1914 | 0.1016 | 31 | 0.1566 |
0.1563 | 0.2033 | 62 | 0.1268 |
0.0598 | 0.3049 | 93 | 0.1189 |
0.0936 | 0.4066 | 124 | 0.1115 |
0.0926 | 0.5082 | 155 | 0.1067 |
0.0829 | 0.6098 | 186 | 0.1024 |
0.1267 | 0.7115 | 217 | 0.0996 |
0.0827 | 0.8131 | 248 | 0.0978 |
0.0991 | 0.9148 | 279 | 0.0968 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for empower-dev-staging/empower-functions-small-v1-1-lc-2
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct