distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6357
- Accuracy: 0.82
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0307 | 1.0 | 113 | 1.8469 | 0.49 |
1.3379 | 2.0 | 226 | 1.1997 | 0.68 |
0.9966 | 3.0 | 339 | 0.9278 | 0.77 |
0.8763 | 4.0 | 452 | 0.8695 | 0.71 |
0.7292 | 5.0 | 565 | 0.7171 | 0.81 |
0.3803 | 6.0 | 678 | 0.6646 | 0.79 |
0.4125 | 7.0 | 791 | 0.6186 | 0.8 |
0.1473 | 8.0 | 904 | 0.5754 | 0.82 |
0.2665 | 9.0 | 1017 | 0.5870 | 0.82 |
0.163 | 10.0 | 1130 | 0.6357 | 0.82 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.15.1
- Downloads last month
- 16
Model tree for eonrad/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert