erenozaltun's picture
End of training
2156875 verified
metadata
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small tr - erenozaltun-common11
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: tr
          split: None
          args: 'config: tr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 20.694339329723853

Whisper Small tr - erenozaltun-common11

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2533
  • Wer: 20.6943

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2185 0.4429 1000 0.2911 25.1363
0.1815 0.8857 2000 0.2704 23.0541
0.0852 1.3286 3000 0.2624 21.8296
0.0705 1.7715 4000 0.2520 20.7564
0.0431 2.2143 5000 0.2533 20.6943

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1