ericguan04's picture
End of training
57ec596 verified
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - narad/ravdess
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-ravdess
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: RAVDESS
          type: narad/ravdess
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8194444444444444

distilhubert-finetuned-ravdess

This model is a fine-tuned version of ntu-spml/distilhubert on the RAVDESS dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6720
  • Accuracy: 0.8194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.795 1.0 162 1.8129 0.25
1.1416 2.0 324 1.2499 0.5278
1.1677 3.0 486 0.9141 0.6875
0.5474 4.0 648 0.7662 0.75
0.4129 5.0 810 0.6744 0.7569
0.2396 6.0 972 0.6781 0.7986
0.0626 7.0 1134 0.7809 0.75
0.1198 8.0 1296 0.6404 0.8194
0.0187 9.0 1458 0.6750 0.8264
0.012 10.0 1620 0.6720 0.8194

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1
  • Datasets 2.19.1
  • Tokenizers 0.19.1