|
--- |
|
license: mit |
|
base_model: neuralmind/bert-base-portuguese-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- __main__ |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: ner_model |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: __main__ |
|
type: __main__ |
|
config: local |
|
split: test |
|
args: local |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.5783305117853887 |
|
- name: Recall |
|
type: recall |
|
value: 0.6134825252106645 |
|
- name: F1 |
|
type: f1 |
|
value: 0.5953881217321357 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7670984455958549 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner_model |
|
|
|
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the __main__ dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5136 |
|
- Precision: 0.5783 |
|
- Recall: 0.6135 |
|
- F1: 0.5954 |
|
- Accuracy: 0.7671 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.7447 | 1.0 | 5905 | 0.7678 | 0.4966 | 0.5209 | 0.5085 | 0.7409 | |
|
| 0.6153 | 2.0 | 11810 | 0.7378 | 0.5628 | 0.5600 | 0.5614 | 0.7624 | |
|
| 0.4623 | 3.0 | 17715 | 0.7959 | 0.5449 | 0.5836 | 0.5636 | 0.7573 | |
|
| 0.3629 | 4.0 | 23620 | 0.8921 | 0.5679 | 0.6017 | 0.5843 | 0.7631 | |
|
| 0.246 | 5.0 | 29525 | 1.0286 | 0.5878 | 0.5955 | 0.5916 | 0.7685 | |
|
| 0.1923 | 6.0 | 35430 | 1.2142 | 0.5926 | 0.5957 | 0.5941 | 0.7689 | |
|
| 0.1477 | 7.0 | 41335 | 1.3019 | 0.5681 | 0.6091 | 0.5879 | 0.7591 | |
|
| 0.1214 | 8.0 | 47240 | 1.4101 | 0.5834 | 0.6110 | 0.5969 | 0.7659 | |
|
| 0.0793 | 9.0 | 53145 | 1.4745 | 0.5848 | 0.6136 | 0.5989 | 0.7688 | |
|
| 0.0733 | 10.0 | 59050 | 1.5136 | 0.5783 | 0.6135 | 0.5954 | 0.7671 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.15.0 |
|
|