|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: swinv2-tiny-patch4-window8-256-finetuned-eurosat |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9825925925925926 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9825868474705166 |
|
- name: Precision |
|
type: precision |
|
value: 0.9828193476192771 |
|
- name: Recall |
|
type: recall |
|
value: 0.9825925925925926 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swinv2-tiny-patch4-window8-256-finetuned-eurosat |
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0510 |
|
- Accuracy: 0.9826 |
|
- F1: 0.9826 |
|
- Precision: 0.9828 |
|
- Recall: 0.9826 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.2 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.4479 | 1.0 | 95 | 0.1592 | 0.9478 | 0.9478 | 0.9500 | 0.9478 | |
|
| 0.3078 | 2.0 | 190 | 0.0914 | 0.9685 | 0.9686 | 0.9695 | 0.9685 | |
|
| 0.2307 | 3.0 | 285 | 0.0603 | 0.9785 | 0.9785 | 0.9790 | 0.9785 | |
|
| 0.227 | 4.0 | 380 | 0.0531 | 0.9811 | 0.9811 | 0.9814 | 0.9811 | |
|
| 0.1674 | 5.0 | 475 | 0.0510 | 0.9826 | 0.9826 | 0.9828 | 0.9826 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.5.1 |
|
- Tokenizers 0.12.1 |
|
|