ernestum commited on
Commit
1044d6b
1 Parent(s): 6ca19b3

Initial commit

Browse files
README.md CHANGED
@@ -37,15 +37,21 @@ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
- python -m utils.load_from_hub --algo ppo --env seals/CartPole-v0 -orga ernestumorga -f logs/
41
  python enjoy.py --algo ppo --env seals/CartPole-v0 -f logs/
42
  ```
43
 
 
 
 
 
 
 
44
  ## Training (with the RL Zoo)
45
  ```
46
  python train.py --algo ppo --env seals/CartPole-v0 -f logs/
47
  # Upload the model and generate video (when possible)
48
- python -m utils.push_to_hub --algo ppo --env seals/CartPole-v0 -f logs/ -orga ernestumorga
49
  ```
50
 
51
  ## Hyperparameters
@@ -63,8 +69,8 @@ OrderedDict([('batch_size', 256),
63
  ('n_timesteps', 100000.0),
64
  ('policy', 'MlpPolicy'),
65
  ('policy_kwargs',
66
- 'dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[64, 64], vf=[64, '
67
- '64])])'),
68
  ('vf_coef', 0.489343896591493),
69
  ('normalize', False)])
70
  ```
 
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga ernestumorga -f logs/
41
  python enjoy.py --algo ppo --env seals/CartPole-v0 -f logs/
42
  ```
43
 
44
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
45
+ ```
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga ernestumorga -f logs/
47
+ rl_zoo3 enjoy --algo ppo --env seals/CartPole-v0 -f logs/
48
+ ```
49
+
50
  ## Training (with the RL Zoo)
51
  ```
52
  python train.py --algo ppo --env seals/CartPole-v0 -f logs/
53
  # Upload the model and generate video (when possible)
54
+ python -m rl_zoo3.push_to_hub --algo ppo --env seals/CartPole-v0 -f logs/ -orga ernestumorga
55
  ```
56
 
57
  ## Hyperparameters
 
69
  ('n_timesteps', 100000.0),
70
  ('policy', 'MlpPolicy'),
71
  ('policy_kwargs',
72
+ {'activation_fn': <class 'torch.nn.modules.activation.ReLU'>,
73
+ 'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
74
  ('vf_coef', 0.489343896591493),
75
  ('normalize', False)])
76
  ```
args.yml CHANGED
@@ -1,6 +1,8 @@
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
 
 
4
  - - device
5
  - cpu
6
  - - env
@@ -12,13 +14,15 @@
12
  - - eval_freq
13
  - 25000
14
  - - gym_packages
15
- - []
16
  - - hyperparams
17
  - null
18
  - - log_folder
19
- - seals_experts
20
  - - log_interval
21
  - -1
 
 
22
  - - n_eval_envs
23
  - 1
24
  - - n_evaluations
@@ -34,11 +38,13 @@
34
  - - no_optim_plots
35
  - false
36
  - - num_threads
37
- - 4
38
  - - optimization_log_path
39
  - null
40
  - - optimize_hyperparameters
41
  - false
 
 
42
  - - pruner
43
  - median
44
  - - sampler
@@ -48,17 +54,15 @@
48
  - - save_replay_buffer
49
  - false
50
  - - seed
51
- - 3866955406
52
  - - storage
53
  - null
54
  - - study_name
55
  - null
56
  - - tensorboard_log
57
- - ''
58
- - - total_n_trials
59
- - null
60
  - - track
61
- - false
62
  - - trained_agent
63
  - ''
64
  - - truncate_last_trajectory
@@ -70,6 +74,8 @@
70
  - - verbose
71
  - 1
72
  - - wandb_entity
73
- - null
74
  - - wandb_project_name
75
- - sb3
 
 
 
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
4
+ - - conf_file
5
+ - hyperparams/python/ppo.py
6
  - - device
7
  - cpu
8
  - - env
 
14
  - - eval_freq
15
  - 25000
16
  - - gym_packages
17
+ - - seals
18
  - - hyperparams
19
  - null
20
  - - log_folder
21
+ - logs
22
  - - log_interval
23
  - -1
24
+ - - max_total_trials
25
+ - null
26
  - - n_eval_envs
27
  - 1
28
  - - n_evaluations
 
38
  - - no_optim_plots
39
  - false
40
  - - num_threads
41
+ - 1
42
  - - optimization_log_path
43
  - null
44
  - - optimize_hyperparameters
45
  - false
46
+ - - progress
47
+ - false
48
  - - pruner
49
  - median
50
  - - sampler
 
54
  - - save_replay_buffer
55
  - false
56
  - - seed
57
+ - 7
58
  - - storage
59
  - null
60
  - - study_name
61
  - null
62
  - - tensorboard_log
63
+ - runs/seals/CartPole-v0__ppo__7__1670516892
 
 
64
  - - track
65
+ - true
66
  - - trained_agent
67
  - ''
68
  - - truncate_last_trajectory
 
74
  - - verbose
75
  - 1
76
  - - wandb_entity
77
+ - ernestum
78
  - - wandb_project_name
79
+ - seals-experts-normalized
80
+ - - yaml_file
81
+ - null
config.yml CHANGED
@@ -24,6 +24,13 @@
24
  - - policy
25
  - MlpPolicy
26
  - - policy_kwargs
27
- - dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[64, 64], vf=[64, 64])])
 
 
 
 
 
 
 
28
  - - vf_coef
29
  - 0.489343896591493
 
24
  - - policy
25
  - MlpPolicy
26
  - - policy_kwargs
27
+ - activation_fn: !!python/name:torch.nn.modules.activation.ReLU ''
28
+ net_arch:
29
+ - pi:
30
+ - 64
31
+ - 64
32
+ vf:
33
+ - 64
34
+ - 64
35
  - - vf_coef
36
  - 0.489343896591493
ppo-seals-CartPole-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f0430bbef17d9463be60c35cc6cc619a3a6dbc7db81e1d9469b484a1d2c5b156
3
- size 138640
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:003d7ffa0640edfa2b72507f5934a87a94e51b1b62ad13c3414db0e92a6519e6
3
+ size 141656
ppo-seals-CartPole-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.4.1a0
 
1
+ 1.6.2
ppo-seals-CartPole-v0/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc420aef280>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc420aef310>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc420aef3a0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc420aef430>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fc420aef4c0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fc420aef550>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc420aef5e0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fc420aef670>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc420aef700>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc420aef790>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc420aef820>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fc420b67870>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
@@ -51,27 +51,27 @@
51
  },
52
  "action_space": {
53
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
54
- ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
55
  "n": 2,
56
  "_shape": [],
57
  "dtype": "int64",
58
  "_np_random": "RandomState(MT19937)"
59
  },
60
- "n_envs": 8,
61
  "num_timesteps": 102400,
62
  "_total_timesteps": 100000,
63
  "_num_timesteps_at_start": 0,
64
- "seed": 0,
65
  "action_noise": null,
66
- "start_time": 1651240811.8226469,
67
  "learning_rate": {
68
  ":type:": "<class 'function'>",
69
- ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9UUk/azSgzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
70
  },
71
- "tensorboard_log": null,
72
  "lr_schedule": {
73
  ":type:": "<class 'function'>",
74
- ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9UUk/azSgzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
75
  },
76
  "_last_obs": null,
77
  "_last_episode_starts": {
@@ -85,7 +85,7 @@
85
  "_current_progress_remaining": -0.02400000000000002,
86
  "ep_info_buffer": {
87
  ":type:": "<class 'collections.deque'>",
88
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAJVd0JWvKU3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCVWtlqagEl1fZQoaAZHQH9AAAAAAABoB030AWgIR0AlVe0G/vfCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJVUj1PFefXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCbGpZOi35N1fZQoaAZHQH9AAAAAAABoB030AWgIR0AmxhF3IMjNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJsVzIV/MGHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCbE1IiC8OF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Amw/etSydGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJsM6BAfMfXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCbCcLBsQ/Z1fZQoaAZHQH9AAAAAAABoB030AWgIR0AmwafBeokzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKBRMN+b3GnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCgTujRD1Gt1fZQoaAZHQH9AAAAAAABoB030AWgIR0AoExvegte2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKBJ9iMHbAXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCgRoM8YAKh1fZQoaAZHQH9AAAAAAABoB030AWgIR0AoEONHYpUhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKBAaNuLrHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCgPUUfxMFl1fZQoaAZHQH9AAAAAAABoB030AWgIR0ApZaURnOB2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKWUONHYpUnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQClkbzbvgFZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0ApY9AX2ugZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKWLy1/lQuXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCliNOuaF251fZQoaAZHQH9AAAAAAABoB030AWgIR0ApYWszVMEidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKWChvitJWnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqzKNhmXgN1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqspmVZ9uxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKrH8KohpxnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqxXhfjS5R1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqsIHkcS5BdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKq/GdZq20HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqu/gzguRN1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqrjZL7GeddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALAVea8YhuHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCwEzXSSeRR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AsBC9h7VridX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALAOQ6p5u63V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCwCtA9mpVF1fZQoaAZHQH9AAAAAAABoB030AWgIR0AsAfapPykLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALAEtmL9/BnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCwAZMtbs4V1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuwE6DGtITdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALr+4TbnHN3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC6/GbTc6/91fZQoaAZHQH9AAAAAAABoB030AWgIR0AuvntfG+9KdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALr2eg+Qlr3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC684NqgyuZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuvBfKISDidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALrtOuaF23nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDAW5Fw1ivx1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwFphnanJldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMBZI+W4Vh3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDAV+YtxuKp1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwFYr8R+SbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMBUsFt8/lnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDAUx0uDjBF1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwFGKhtcfOdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMMCFsYVIqnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDDAOkLx7Rh1fZQoaAZHQH9AAAAAAABoB030AWgIR0Awv+r2g398dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAML+bd8Aq/nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDC/LMcIZ651fZQoaAZHQH9AAAAAAABoB030AWgIR0Awvs3Q2MsIdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAML5pBX0Xg3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDC+BEroW591fZQoaAZHQH9AAAAAAABoB030AWgIR0AxcYNAkcCHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMXE5ZKWcBnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDFw6vJRwZR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxcJvHcUM5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMXAtapxWDHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDFvzpX6qKh1fZQoaAZHQH9AAAAAAABoB030AWgIR0Axb2n889wFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMW8FlkH2RXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDIxpEhJRO11fZQoaAZHQH9AAAAAAABoB030AWgIR0AyMVkMCtA+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMjEJv5xionV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDIwulGgBcR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AyMEvTPSlWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMi/s3Q2MsHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDIviBGx2St1fZQoaAZHQH9AAAAAAABoB030AWgIR0AyLyNGViWndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMuDsdDIBBHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDLgoH9m6Gx1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ay4FEiMYMwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMuABo24usnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDLfkxREWqN1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ay3zQeFL39dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMt7PY4ACGXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDLeaqjrRjV1fZQoaAZHQH9AAAAAAABoB030AWgIR0Azkd3B55Z9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM5GSIP9UCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDORQrMC9yt1fZQoaAZHQH9AAAAAAABoB030AWgIR0AzkPN3W4EwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM5CE12q1gHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDOQJeE7GNt1fZQoaAZHQH9AAAAAAABoB030AWgIR0Azj8EV32VWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM49cW0qpcXVlLg=="
89
  },
90
  "ep_success_buffer": {
91
  ":type:": "<class 'collections.deque'>",
@@ -102,9 +102,9 @@
102
  "n_epochs": 10,
103
  "clip_range": {
104
  ":type:": "<class 'function'>",
105
- ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
106
  },
107
  "clip_range_vf": null,
108
- "target_kl": null,
109
- "normalize_advantage": true
110
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9370da4700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9370da4790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9370da4820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9370da48b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9370da4940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9370da49d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9370da4a60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9370da4af0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9370da4b80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9370da4c10>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9370da4ca0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9370d9cc30>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
 
51
  },
52
  "action_space": {
53
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
54
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgMvWU2I7QWSDdygaT5++KSAATCN90WccEqDtnFV3Y9MyLlpJIkIvbFJbpmpRHJX7SZr4rNIblBqp+ccsvAR6E3PBn61gcJfsxhg3x3PqnSmOqgLqwqIfkWzrz6Tf7NSrm1SSpbmnGNt3g/H87CT3UgGUR8+HrL79sEyK19tohIeSCjwJLlaEiqt73sZ9FJuvWOgJ3QNRV0zMGqSYGeuLv+TZ0EN3+cyUE+2SDHCnC8u+eTF8fJciknY5HW6tbE8ba0T1dJIbNDabvq3Lgzsjaj2J1a7ewVritpsjEYCurZVZpRofQC3nO0jM0C3+YuXA2lZGNYHChc8MyrCvJFQJFlfQ6BPvCeiw5+FaDMxbSonLCcRFZPKJp/lWXhgYkj0swzyhXxNK4EuHqIvN1K+tQ0O3iv/AsSiGk4LYvZONnoPxuDvSFcQq8UdUpcJew8fp98fUiPvPgHKAyO+L/60Vzkqu4hXw9hUKR7cWJQZLV9ChyDHgbsufUNTzdmm58PdxfyD8sb0Fhi30bqDkMwc6vuIXQYXYIgfYVnRcsI8ZmwcYjxg8cQeVZf1hZkd00dKZryQNLb2bz1WRqlWiK1AOV5KEPeonMRrdcwQnEBRqx9ThMDIDdCHWE2moNgX9Lu29fAxYIe//6Duh7KKhp5v80UQ7VD/0ddR8UbUVl4xVW4UneWt9U8AcBpaAgolQEZzIT0q3RzCYbWDwzLzFaawdkttUhKkFiwjDJcESKnKqKDofg5+k4YTJOSO1kagch1NV1JXrfrSfcaUDMG8F27PRTcBF/8idtyoK/uZB9ThefVNaXRCRY/K/zZz7ehTk1GSqe70bQUNaAEdFBYnd+ywk04zhEOrR532pOkyigwWnJdHBJm2VoJlaH9A04Rkw45X+ZhEcpFFBrpzhU/TBs+BgQp/ZZR1WcrWYkGzvojd9ICb8Sm3rD1jGKIuDrtw92SCXLHVCMv5Wm6IbJyVjtfO1ey/FC8aWgnTf7j/rrF5xcXoVpRipjNzX5Pc8VuvLPEPTMynVqU5M40Dr5koIKfSIg6gySM5BKS5t/zKzpo234Ril+u6/qEWjW8BdnXxw/98IhTfAUPlCXWhHyGEOF2hlQA0OG/zY0mmECbWESSFGPFOJzPNOXV/RwcT0jZ8gbecWrVBYrwJfPTHLudSMk+cb17Lwog0aT7oTB0ADU79VLykWKy8iWUGqRcsS0FMHfx4iGcxqht31heDU97MgsQJmlXKdLYP1/I6dXbpgsy/u67kQD9Gc6DjRYf6MdyDVrgymYFM18I6iwSKBIZaf0ZB1AiPK+L9N4eHDVJ1yNvscr5WfwpXg5IhpIJO7E2Rlhbh3xzcWLHo3yj4KLPpwHm2QkjDB3g+Ki/dU2++svSiw4QxzUoXT828rksNjdWXXTOoT6Uc130tGHrmbrfAVnzgUBztr1rkmZmPghFQKId2BR0FkP5MHIsn2tnq7yBXUyyvp+mIJovz5pl0thi5PXl2iiuF6NEbn1rcJ20T5r8gm1lx8gEiHeJss6lg569RDEQPP7gzAjSdS2qGZxEvnyz3QZtpWUXbNsTn+XMObH0/QYw5toa1OjO9wA6j722A5g+vSqeD4H/SOSdR/vl4+m6ZQ8ZjH04RKbGijjsHt0O438qwtwYcmyvBOgEVPUZoJsKm4xIbTANeMWUfW/9en6llQ09Q2GNGYzbPUrXjNPVTzcw7MRMwvfjqL8KSMFxRb41p/8TdxBoLL0Kl8GeA7gzPO76lQg0havYsWjS7Oihv6lY7NdC4fy/ZvTWPeicOus0EdBbVieeskgrHKNAXoP8f/8MT2Kfh5aG69pUbV60nurbRfvbxAQp7QY1LHpt9wdiNBHrmXapt1i9ujL40360NSK5qm9zNaW0EF79jlogPKlKxZI3MMzLpD9a/TxRRQCbc2K+kYySF2kmJWtbyC383WeVDjimpDXpDTPng23MBKrwP+ZU5SynDdFY59LM/DdidhSjcBqa6d0uHGivnMXdui4qFwj1M3fkqCda0ks0pyoNTL9x6ORZZwLL3l6A3sNruF9bVyLi1KSnsE/umc0nRu3EPtaMLzo3ltupslyMhR2aMVjgxE9qykusS4Q9K/wMBItytZsaIg9J9C/SE4w/SSWtq/FT0Tky+uDkGCtR/ESEt0G9ldpIsQTGEO5JXn7MvPOK6elxfmcFxnn5Wegq9zY0lVOaYpuTkeFtSDEJCKDu2AMEjpgXs13GEd7vcDJgl7i3uQaSJWOFaK+l51C6R77PVNOFl/jAHq+Diu+K2PhI6xodlk2ZZNsPYEFyZC+zzkiczrIxx4xx8T0WsCWYZEQMums3oxrEwdQqqbrrPmQSs07U+JfaagHlzslMbmbqiZ/9VXWQjxyfVlGjuM1qxgqeSHyVwvKl6f6DbkpOoYlTnRU9g3C1FENK717sF5/fZbbQMNqsJuaGvpqf57LLRKt/XFPDjHDUB9pbPM1r0TLH5KG74ICd43JrtiaCgNXJxHkYyzKrXQAx/XvilvzBvNLsrDUaoMvlT9ijtcF8dTjTB+U6sP7eAXA0BbuZW+EylZ66meD1auuTfd0MfWNxggoAj3px8RCXRyJkOqxjTgrgUGflH8TjL4mJSsrd9MCQoAqwmN8CrrLff3nlT3YhXUsXXNSI7lqBxXsy2OTNgHlHZmYfLg+67h3KnjOexQhueOod2KqF7EsJNcscbpywzWZmEx66XZre2BVKEbFJnQG0B9GOxbw8T1fGhwRrMuNpprpFRYE7Cir5MNHd7U7JCpO2J9mIKRaeHMdlu8wGONMGAJYjxNKFrJjvc2lFG4yXDmOMxpzYx8jAEFnKRCzlohYowX63r30lQ4KO/+nCK12rJ6Ev2TdjF+bL6tXybdp0eNo+5+MlTDa407XyUrOv6ve6iZTSZvvK9h6M/DFP/JFhv1CmcmlKYYF5oF1chTIAZiG4S+uH/Zn/hw4j9cjKhWCjhViTrooipaq6pyhd1CXpzXXodGrsmlrYX9e47fikDqRsw06oJCUGni5RqsyZWZizGL7GqQlNzsxSRWioTQh0IAEDkhV/Tg3NCJbL6dV7h4idhehjvMc9wki3ApcdPoz3QxY3jHak0bQGkXnRUa+8tsH9zttnNH66piW6P++i1LUHsmpkMLrtOKLDFAW72M8tpJm8I0A7dSD7VO/llyhZN45fvyOyq/h93CJr+tpGqzKWRJZ2n1OekXsEx5jMtdpWGkxn51Xu206pxf9ZmEONv3kabS+LJblwnigtqyvI/nbvWVzBYR4H38BjJgszCdfpqdEJXN+CD/0cWG1uvD4Eq6VRFAt2+kNUgP7ZeKlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
55
  "n": 2,
56
  "_shape": [],
57
  "dtype": "int64",
58
  "_np_random": "RandomState(MT19937)"
59
  },
60
+ "n_envs": 1,
61
  "num_timesteps": 102400,
62
  "_total_timesteps": 100000,
63
  "_num_timesteps_at_start": 0,
64
+ "seed": 1,
65
  "action_noise": null,
66
+ "start_time": 1670516894814637504,
67
  "learning_rate": {
68
  ":type:": "<class 'function'>",
69
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1RST9rNKDOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
70
  },
71
+ "tensorboard_log": "runs/seals/CartPole-v0__ppo__7__1670516892/seals-CartPole-v0",
72
  "lr_schedule": {
73
  ":type:": "<class 'function'>",
74
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1RST9rNKDOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
75
  },
76
  "_last_obs": null,
77
  "_last_episode_starts": {
 
85
  "_current_progress_remaining": -0.02400000000000002,
86
  "ep_info_buffer": {
87
  ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAMZfC66J66nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDGXhvR7Z391fZQoaAZHQH9AAAAAAABoB030AWgIR0Axl0r9VFQVdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMZcAFPi1iXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDLI36yjYZl1fZQoaAZHQH9AAAAAAABoB030AWgIR0AyyJ7sv7FbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMshHkLhJiHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDLH8XN1QqJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ayx7KJVKf4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMsd1p0wJxHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDLHOW0JF9d1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ayxu4gA6uGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM/rXxvvSdHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDP6mHgxagV1fZQoaAZHQH9AAAAAAABoB030AWgIR0Az+kIX0oSddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM/ntWuHN5nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDP5r1uivgZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0Az+XQtz0YkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM/k43m3fAXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDP47nxJ/Xp1fZQoaAZHQH9AAAAAAABoB030AWgIR0A1J6RyOq//dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANSdfTkQwsXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDUnCN0eU6h1fZQoaAZHQH9AAAAAAABoB030AWgIR0A1JrQPZqVRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANSZ3s5XEInV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDUmPaL4vex1fZQoaAZHQH9AAAAAAABoB030AWgIR0A1JgRsdkrgdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANSW7voePrHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDZcFeOXE611fZQoaAZHQH9AAAAAAABoB030AWgIR0A2W9VWCEpRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANlt92HLzPXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDZbKDCgsbx1fZQoaAZHQH9AAAAAAABoB030AWgIR0A2WunuRcNZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANlqtknTiKnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDZacVgx8D11fZQoaAZHQH9AAAAAAABoB030AWgIR0A2WiYsunMudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAN5hNZeRgZ3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDeYCcPOIIp1fZQoaAZHQH9AAAAAAABoB030AWgIR0A3l7Qb+98JdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAN5deIEbHZXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDeXH2h7E511fZQoaAZHQH9AAAAAAABoB030AWgIR0A3luM+/xlQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAN5anJkoWpXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDeWW8h9srN1fZQoaAZHQH9AAAAAAABoB030AWgIR0A6KNmDlHSXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOiiYPXkHU3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDooQTVUdaN1fZQoaAZHQH9AAAAAAABoB030AWgIR0A6J+x4Y77sdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOiewcHWz4XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDondadMCcR1fZQoaAZHQH9AAAAAAABoB030AWgIR0A6JzqKP4mDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOibwvxpco3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDtZEuxrzoV1fZQoaAZHQH9AAAAAAABoB030AWgIR0A7WM23rleXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAO1h3u/k/8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDtYIcBEKE51fZQoaAZHQH9AAAAAAABoB030AWgIR0A7V+MIeHSGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAO1emR/3Fk3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDtXaews5GV1fZQoaAZHQH9AAAAAAABoB030AWgIR0A7Vx6v7m+1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPH9Jvo/zKHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDx/BJqZc9p1fZQoaAZHQH9AAAAAAABoB030AWgIR0A8fq3EyckMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPH5XyRSxaHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDx+GQCCBf91fZQoaAZHQH9AAAAAAABoB030AWgIR0A8fdxQzk6tdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPH2f5DZ13nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDx9VJcxCY11fZQoaAZHQH9AAAAAAABoB030AWgIR0A9rQKrq+rVdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPazB2wFC9nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQD2sa5wwTM91fZQoaAZHQH9AAAAAAABoB030AWgIR0A9rBY3eenRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPavYODrZ8XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQD2rnHNorWl1fZQoaAZHQH9AAAAAAABoB030AWgIR0A9q2Cdz4lAdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPasV+I/JNnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQD7iBd2PkrB1fZQoaAZHQH9AAAAAAABoB030AWgIR0A+4cDr7fpEdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPuFqWTot+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQD7hFG5MDfZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0A+4NWluWKNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPuCY5T6zmnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQD7gXGff4yp1fZQoaAZHQH9AAAAAAABoB030AWgIR0A+4BGx2SuAdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQA0sH0K7ZnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEANDTBqKxd1fZQoaAZHQH9AAAAAAABoB030AWgIR0BADOOsDGLldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQAy66J66a3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEAMna37UG51fZQoaAZHQH9AAAAAAABoB030AWgIR0BADIFvAGjcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQAxlg+hXbXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEAMQfZElVt1fZQoaAZHQH9AAAAAAABoB030AWgIR0BArgpKBd2QdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQK3pD/lyR3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQECtvybx3FF1fZQoaAZHQH9AAAAAAABoB030AWgIR0BArZX2dupCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQK13jdYW+HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQECtWWhRIjJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BArTtb9qDcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQK0VvddmhHVlLg=="
89
  },
90
  "ep_success_buffer": {
91
  ":type:": "<class 'collections.deque'>",
 
102
  "n_epochs": 10,
103
  "clip_range": {
104
  ":type:": "<class 'function'>",
105
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
106
  },
107
  "clip_range_vf": null,
108
+ "normalize_advantage": true,
109
+ "target_kl": null
110
  }
ppo-seals-CartPole-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d017cd4add2514e12384da546ec6ed5303da8dd59711d3d8fc5c2b28a4575c3
3
- size 79453
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f8f95042d63d71329a83889b244855b119ff1fde42470577638bb8a7472455e
3
+ size 82425
ppo-seals-CartPole-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8b7f8bd78b461cde84c74f83d80b296a12c5a9206435029ce843acec812a023f
3
  size 40513
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:385b42f25c52b68029dd9c47cf3b1b779c3ec4a4441606218bacd6091fa5bb6f
3
  size 40513
ppo-seals-CartPole-v0/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
- OS: Linux-5.4.0-109-generic-x86_64-with-glibc2.29 #123-Ubuntu SMP Fri Apr 8 09:10:54 UTC 2022
2
  Python: 3.8.10
3
- Stable-Baselines3: 1.4.1a0
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
 
1
+ OS: Linux-5.4.0-125-generic-x86_64-with-glibc2.29 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022
2
  Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c1428837404497e463bb6328186283ec09068bce8601f5d59ca3f46bbde225b
3
- size 55885
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b7051380170d8c8c4a86101d6def7c0b8950e420b0bbd4775b96c1e170313aa
3
+ size 60768
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-28T14:06:50.696510"}
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T14:33:46.683447"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:23e9479340a3b7324125e6ab6b6e913dcd48421d53b468708ab3fbcf8c814931
3
- size 6634
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:913814bce3741222e544117345a87cf5fd970bd301ff0985679b10763887659e
3
+ size 6702