|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- seals/MountainCar-v0 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: -100.60 +/- 5.75 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: seals/MountainCar-v0 |
|
type: seals/MountainCar-v0 |
|
--- |
|
|
|
# **PPO** Agent playing **seals/MountainCar-v0** |
|
This is a trained model of a **PPO** agent playing **seals/MountainCar-v0** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) |
|
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). |
|
|
|
The RL Zoo is a training framework for Stable Baselines3 |
|
reinforcement learning agents, |
|
with hyperparameter optimization and pre-trained agents included. |
|
|
|
## Usage (with SB3 RL Zoo) |
|
|
|
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> |
|
SB3: https://github.com/DLR-RM/stable-baselines3<br/> |
|
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib |
|
|
|
``` |
|
# Download model and save it into the logs/ folder |
|
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga ernestumorga -f logs/ |
|
python enjoy.py --algo ppo --env seals/MountainCar-v0 -f logs/ |
|
``` |
|
|
|
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: |
|
``` |
|
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga ernestumorga -f logs/ |
|
rl_zoo3 enjoy --algo ppo --env seals/MountainCar-v0 -f logs/ |
|
``` |
|
|
|
## Training (with the RL Zoo) |
|
``` |
|
python train.py --algo ppo --env seals/MountainCar-v0 -f logs/ |
|
# Upload the model and generate video (when possible) |
|
python -m rl_zoo3.push_to_hub --algo ppo --env seals/MountainCar-v0 -f logs/ -orga ernestumorga |
|
``` |
|
|
|
## Hyperparameters |
|
```python |
|
OrderedDict([('batch_size', 512), |
|
('clip_range', 0.2), |
|
('ent_coef', 6.4940755116195606e-06), |
|
('gae_lambda', 0.98), |
|
('gamma', 0.99), |
|
('learning_rate', 0.0004476103728105138), |
|
('max_grad_norm', 1), |
|
('n_envs', 16), |
|
('n_epochs', 20), |
|
('n_steps', 256), |
|
('n_timesteps', 1000000.0), |
|
('normalize', 'dict(norm_obs=False, norm_reward=True)'), |
|
('policy', |
|
'imitation.policies.base.MlpPolicyWithNormalizeFeaturesExtractor'), |
|
('policy_kwargs', |
|
'dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, ' |
|
'64])])'), |
|
('vf_coef', 0.25988158989488963), |
|
('normalize_kwargs', {'norm_obs': False, 'norm_reward': False})]) |
|
``` |
|
|