Edit model card

ESPnet2 ASR model

espnet/tedlium3

This model was trained by Dongwei Jiang using tedlium3 recipe in espnet.

Demo: How to use in ESPnet2

cd espnet
git checkout ff841366229d539eb74d23ac999cae7c0cc62cad
pip install -e .
cd egs2/tedlium3/asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/dongwei_tedlium3_asr_e-branchformer_external_lm

RESULTS

Environments

  • date: Tue Apr 11 01:15:36 EDT 2023
  • python version: 3.8.16 (default, Mar 2 2023, 03:21:46) [GCC 11.2.0]
  • espnet version: espnet 202301
  • pytorch version: pytorch 1.8.1
  • Git hash: b0cceeac2ecd330e8270789cef945e49058858fa
    • Commit date: Thu Mar 30 08:26:54 2023 -0400

exp/asr_train_asr_e_branchformer_size256_mlp1024_e12_mactrue_raw_en_bpe500_sp

WER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_lm_lm_train_lm_en_bpe500_valid.loss.ave_asr_model_valid.acc.ave/test 1155 27500 94.2 2.5 3.3 0.6 6.4 59.2

CER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_lm_lm_train_lm_en_bpe500_valid.loss.ave_asr_model_valid.acc.ave/test 1155 145066 96.8 0.5 2.7 0.6 3.8 59.2

TER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_lm_lm_train_lm_en_bpe500_valid.loss.ave_asr_model_valid.acc.ave/test 1155 54206 95.8 1.6 2.6 0.5 4.7 59.2

exp/asr_train_asr_e_branchformer_size256_mlp1024_e12_mactrue_raw_en_bpe500_sp/decode_lm_lm_train_lm_en_bpe500_valid.loss.ave_asr_model_valid.acc.ave

WER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
org/dev 507 17783 93.6 3.1 3.3 0.9 7.3 69.0

CER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
org/dev 507 95429 96.5 0.7 2.8 0.8 4.4 69.0

TER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
org/dev 507 36002 95.4 2.0 2.6 0.8 5.5 69.0

ASR config

expand
config: conf/tuning/train_asr_e_branchformer_size256_mlp1024_e12_mactrue.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_asr_e_branchformer_size256_mlp1024_e12_mactrue_raw_en_bpe500_sp
ngpu: 1
seed: 2022
num_workers: 6
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 33461
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 50
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - acc
    - max
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: true
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 50000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_en_bpe500_sp/train/speech_shape
- exp/asr_stats_raw_en_bpe500_sp/train/text_shape.bpe
valid_shape_file:
- exp/asr_stats_raw_en_bpe500_sp/valid/speech_shape
- exp/asr_stats_raw_en_bpe500_sp/valid/text_shape.bpe
batch_type: numel
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
train_data_path_and_name_and_type:
-   - dump/raw/train_sp/wav.scp
    - speech
    - kaldi_ark
-   - dump/raw/train_sp/text
    - text
    - text
valid_data_path_and_name_and_type:
-   - dump/raw/dev/wav.scp
    - speech
    - kaldi_ark
-   - dump/raw/dev/text
    - text
    - text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
    lr: 0.002
    weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
    warmup_steps: 15000
token_list:
- <blank>
- <unk>
- '[unk]'
- ▁
- s
- ▁the
- t
- ▁and
- e
- ▁a
- ▁to
- d
- ▁of
- ''''
- n
- ing
- ▁in
- ▁that
- re
- ▁i
- c
- o
- u
- ▁we
- y
- a
- ed
- ▁it
- ▁you
- i
- m
- ▁is
- er
- p
- g
- w
- al
- ▁this
- ▁so
- f
- le
- b
- ar
- ▁f
- k
- ▁c
- r
- in
- or
- ▁for
- ▁be
- ve
- ▁was
- te
- th
- ▁do
- es
- ly
- ▁they
- ro
- ▁are
- ▁with
- ▁have
- an
- v
- ch
- ▁on
- se
- lo
- ▁but
- en
- ri
- li
- ▁what
- it
- ic
- ▁can
- l
- ur
- ce
- ent
- ▁me
- ▁b
- ▁ma
- ▁he
- ra
- ▁de
- ll
- at
- ▁about
- ▁one
- ▁not
- ne
- ▁all
- ▁my
- ter
- el
- il
- ▁there
- 'on'
- ad
- ▁mo
- ol
- ation
- nd
- ▁like
- ▁people
- po
- ▁at
- ▁us
- us
- ▁g
- ci
- ▁our
- h
- pe
- ▁as
- ▁from
- vi
- ▁if
- as
- ▁ex
- ▁con
- ▁an
- ver
- ▁out
- ▁just
- un
- ▁see
- la
- ▁di
- ▁when
- ▁now
- ▁p
- ha
- ▁who
- ck
- ▁these
- ▁because
- ▁or
- ▁know
- ion
- ir
- ▁co
- ▁up
- ▁pa
- ment
- ▁think
- ge
- ▁how
- ide
- ▁by
- ul
- ity
- ▁go
- ▁get
- ▁ho
- ive
- ▁very
- ate
- ng
- ▁no
- ▁had
- ac
- ▁bo
- ry
- ▁more
- ▁them
- ▁some
- mi
- ▁time
- ▁your
- me
- ▁going
- op
- am
- per
- et
- ▁would
- ru
- ure
- ti
- ist
- ▁their
- x
- ▁were
- ▁look
- ▁pro
- ▁which
- ▁work
- tion
- est
- ty
- im
- z
- ta
- ▁want
- ▁two
- age
- ▁really
- om
- ma
- ers
- ting
- ▁world
- co
- ▁way
- ▁don
- wa
- hi
- tra
- ▁la
- ▁here
- able
- lu
- ▁other
- mo
- ies
- ▁has
- ▁could
- j
- ▁make
- ally
- ▁sta
- ten
- ▁will
- ▁un
- ig
- ▁where
- ▁into
- ke
- ▁than
- ▁comp
- ▁actually
- tic
- sh
- ▁did
- tor
- fa
- ical
- ▁she
- ▁years
- ▁say
- one
- ted
- ▁things
- ph
- ▁new
- ▁pre
- ▁any
- ▁thousand
- ▁been
- ▁inter
- ▁his
- ▁com
- ▁need
- nce
- ▁right
- ▁take
- ▁even
- ▁over
- ▁start
- ▁hundred
- min
- ▁sp
- ▁those
- ▁car
- ▁then
- mp
- ap
- ▁first
- les
- ize
- ▁every
- ba
- ▁something
- ▁well
- ard
- ▁str
- ▁back
- und
- ia
- pl
- ki
- ho
- ▁call
- ▁most
- ▁also
- bi
- ▁thing
- ▁life
- um
- ▁said
- ▁kind
- ▁lot
- ▁much
- va
- ▁ra
- ▁little
- ▁dr
- ▁got
- ▁come
- ful
- ▁talk
- ▁part
- ▁day
- ant
- ction
- ▁happen
- ▁only
- ▁many
- ▁wo
- pri
- ▁her
- ▁br
- qui
- ▁mean
- ▁three
- iv
- ▁different
- ugh
- ain
- ▁human
- ance
- ▁change
- ▁let
- ▁real
- ▁show
- ▁good
- ▁around
- ▁through
- ▁jo
- bu
- ▁down
- ight
- ga
- ▁why
- ▁live
- ff
- ▁tell
- ▁put
- ▁idea
- port
- ▁same
- ▁give
- ated
- ish
- ible
- ▁though
- ious
- ▁problem
- ▁five
- par
- ▁fact
- ▁cha
- ition
- ▁year
- ▁big
- ▁plan
- ▁great
- ▁find
- ▁four
- ▁app
- ▁after
- ▁system
- ▁place
- ▁em
- ▁build
- ▁percent
- ▁again
- ▁point
- ▁learn
- ▁own
- ▁long
- ▁made
- ▁today
- ▁nine
- ities
- ▁gene
- ▁six
- ▁question
- light
- ▁should
- ▁came
- ▁feel
- ▁turn
- ▁person
- ▁end
- ▁hu
- ▁design
- ▁help
- ▁brain
- ▁last
- ▁create
- ▁important
- ▁before
- ▁high
- ▁never
- ▁trans
- ▁another
- ▁him
- ▁eight
- ▁might
- ▁understand
- ▁power
- ▁better
- q
- ▁found
- ▁play
- ▁twenty
- ▁still
- ▁school
- ▁each
- ▁seven
- ▁together
- ▁few
- ▁hand
- ▁example
- que
- ▁next
- ▁million
- ▁story
- ▁women
- ▁under
- ▁number
- ▁course
- ▁water
- ▁ago
- ▁grow
- ▁between
- ▁develop
- ▁america
- ▁sort
- ▁technology
- ▁believe
- ▁second
- ▁small
- ▁maybe
- ▁become
- press
- ▁health
- ▁space
- ▁word
- ▁hard
- ▁children
- ▁organ
- ▁always
- ▁country
- ▁reason
- ▁experience
- ▁large
- ▁everything
- ▁friend
- ▁project
- ▁computer
- ▁fifty
- ▁money
- ▁information
- graph
- ▁walk
- ization
- ▁africa
- ▁picture
- ▁process
- ▁teach
- ▁enough
- ▁elect
- ▁thirty
- '0'
- '1'
- '2'
- '9'
- '3'
- '5'
- '8'
- '4'
- '7'
- '6'
- '&'
- +
- '#'
- '@'
- '*'
- \
- ^
- R
- _
- '-'
- '%'
- '='
- $
- M
- ā
- ']'
- E
- U
- A
- G
- '['
- <sos/eos>
init: null
input_size: null
ctc_conf:
    dropout_rate: 0.0
    ctc_type: builtin
    reduce: true
    ignore_nan_grad: null
    zero_infinity: true
joint_net_conf: null
use_preprocessor: true
token_type: bpe
bpemodel: data/en_token_list/bpe_unigram500/bpe.model
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
aux_ctc_tasks: []
frontend: default
frontend_conf:
    n_fft: 512
    win_length: 400
    hop_length: 160
    fs: 16k
specaug: specaug
specaug_conf:
    apply_time_warp: true
    time_warp_window: 5
    time_warp_mode: bicubic
    apply_freq_mask: true
    freq_mask_width_range:
    - 0
    - 27
    num_freq_mask: 2
    apply_time_mask: true
    time_mask_width_ratio_range:
    - 0.0
    - 0.05
    num_time_mask: 5
normalize: global_mvn
normalize_conf:
    stats_file: exp/asr_stats_raw_en_bpe500_sp/train/feats_stats.npz
model: espnet
model_conf:
    ctc_weight: 0.3
    lsm_weight: 0.1
    length_normalized_loss: false
preencoder: null
preencoder_conf: {}
encoder: e_branchformer
encoder_conf:
    output_size: 256
    attention_heads: 4
    attention_layer_type: rel_selfattn
    pos_enc_layer_type: rel_pos
    rel_pos_type: latest
    cgmlp_linear_units: 1024
    cgmlp_conv_kernel: 31
    use_linear_after_conv: false
    gate_activation: identity
    num_blocks: 12
    dropout_rate: 0.1
    positional_dropout_rate: 0.1
    attention_dropout_rate: 0.1
    input_layer: conv2d
    layer_drop_rate: 0.0
    linear_units: 1024
    positionwise_layer_type: linear
    use_ffn: true
    macaron_ffn: true
    merge_conv_kernel: 31
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
    attention_heads: 4
    linear_units: 2048
    num_blocks: 6
    dropout_rate: 0.1
    positional_dropout_rate: 0.1
    self_attention_dropout_rate: 0.1
    src_attention_dropout_rate: 0.1
preprocessor: default
preprocessor_conf: {}
required:
- output_dir
- token_list
version: '202301'
distributed: true

Citing ESPnet

@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}



or arXiv:

@misc{watanabe2018espnet,
  title={ESPnet: End-to-End Speech Processing Toolkit}, 
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  year={2018},
  eprint={1804.00015},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train espnet/dongwei_tedlium3_asr_e-branchformer_external_lm