eunyounglee's picture
End of training
5e03d05 verified
|
raw
history blame
2.75 kB
metadata
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: degree-bert-finetuning-2
    results: []

degree-bert-finetuning-2

This model is a fine-tuned version of klue/bert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6107
  • Accuracy: 0.698
  • F1: 0.6968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.06 1.0 104 0.8187 0.61 0.6100
0.849 2.0 208 0.7525 0.642 0.6415
0.8117 3.0 312 0.7479 0.616 0.6044
0.7758 4.0 416 0.7269 0.652 0.6490
0.7638 5.0 520 0.6960 0.674 0.6741
0.7412 6.0 624 0.6842 0.676 0.6739
0.7337 7.0 728 0.6653 0.692 0.6922
0.723 8.0 832 0.6502 0.674 0.6711
0.7045 9.0 936 0.6407 0.672 0.6681
0.6975 10.0 1040 0.6330 0.686 0.6852
0.6914 11.0 1144 0.6351 0.686 0.6846
0.6876 12.0 1248 0.6230 0.702 0.7023
0.672 13.0 1352 0.6230 0.698 0.6978
0.6733 14.0 1456 0.6251 0.678 0.6736
0.6701 15.0 1560 0.6124 0.706 0.7064
0.6592 16.0 1664 0.6195 0.688 0.6853
0.6534 17.0 1768 0.6070 0.708 0.7082
0.6528 18.0 1872 0.6093 0.704 0.7040
0.6514 19.0 1976 0.6124 0.698 0.6963
0.6406 20.0 2080 0.6107 0.698 0.6968

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.0
  • Datasets 2.17.1
  • Tokenizers 0.15.2