Edit model card

hana-persona-emotion-bert-finetuning-1

This model is a fine-tuned version of klue/bert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5455
  • Accuracy: 0.9445
  • F1: 0.9408

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.0485 0.12 500 0.3564 0.9360 0.9263
0.2109 0.24 1000 0.2069 0.9438 0.9315
0.1862 0.36 1500 0.1709 0.9437 0.9301
0.1759 0.48 2000 0.1809 0.9449 0.9372
0.176 0.6 2500 0.1710 0.9408 0.9336
0.1736 0.72 3000 0.1610 0.9447 0.9412
0.1668 0.84 3500 0.1739 0.9454 0.9359
0.169 0.96 4000 0.1725 0.9449 0.9358
0.1419 1.08 4500 0.2007 0.9471 0.9413
0.1283 1.2 5000 0.2220 0.9465 0.9381
0.1308 1.32 5500 0.1991 0.9471 0.9408
0.1417 1.44 6000 0.1752 0.9474 0.9420
0.121 1.57 6500 0.1917 0.9485 0.9423
0.1392 1.69 7000 0.1842 0.9486 0.9421
0.1256 1.81 7500 0.2031 0.9476 0.9382
0.1447 1.93 8000 0.1784 0.9459 0.9392
0.1138 2.05 8500 0.2106 0.9449 0.9425
0.088 2.17 9000 0.2321 0.9477 0.9405
0.0971 2.29 9500 0.2160 0.9449 0.9405
0.0923 2.41 10000 0.2561 0.9474 0.9413
0.0947 2.53 10500 0.2355 0.9472 0.9438
0.0832 2.65 11000 0.2683 0.9465 0.9409
0.0936 2.77 11500 0.2640 0.9439 0.9411
0.0968 2.89 12000 0.2642 0.9481 0.9378
0.0965 3.01 12500 0.2619 0.9443 0.9394
0.0446 3.13 13000 0.3138 0.9381 0.9390
0.0527 3.25 13500 0.3145 0.9415 0.9393
0.0528 3.37 14000 0.3099 0.9453 0.9413
0.0583 3.49 14500 0.3114 0.9464 0.9384
0.0593 3.61 15000 0.3153 0.9449 0.9415
0.0661 3.73 15500 0.3373 0.9404 0.9383
0.0572 3.85 16000 0.3282 0.9418 0.9404
0.063 3.97 16500 0.3098 0.9443 0.9388
0.0315 4.09 17000 0.3851 0.9393 0.9390
0.0275 4.21 17500 0.3971 0.9409 0.9391
0.035 4.33 18000 0.4076 0.9426 0.9388
0.0413 4.45 18500 0.3752 0.9409 0.9404
0.0345 4.58 19000 0.3747 0.9449 0.9419
0.0421 4.7 19500 0.3612 0.9443 0.9420
0.0383 4.82 20000 0.3918 0.9458 0.9415
0.0363 4.94 20500 0.3815 0.9404 0.9403
0.032 5.06 21000 0.3890 0.9455 0.9431
0.0165 5.18 21500 0.4314 0.9455 0.9417
0.0226 5.3 22000 0.4210 0.9463 0.9409
0.0211 5.42 22500 0.4091 0.9461 0.9418
0.0186 5.54 23000 0.4210 0.9436 0.9405
0.0217 5.66 23500 0.4197 0.9446 0.9410
0.0252 5.78 24000 0.4054 0.9423 0.9414
0.0203 5.9 24500 0.4233 0.9447 0.9410
0.0197 6.02 25000 0.4844 0.9418 0.9396
0.0085 6.14 25500 0.4883 0.9422 0.9411
0.0147 6.26 26000 0.5028 0.9381 0.9384
0.0169 6.38 26500 0.4833 0.9390 0.9384
0.0133 6.5 27000 0.4980 0.9450 0.9383
0.0147 6.62 27500 0.4710 0.9406 0.9389
0.0119 6.74 28000 0.4898 0.9392 0.9378
0.0191 6.86 28500 0.4502 0.9425 0.9393
0.0172 6.98 29000 0.4568 0.9444 0.9403
0.012 7.1 29500 0.4680 0.9452 0.9409
0.007 7.22 30000 0.4756 0.9445 0.9404
0.0059 7.34 30500 0.4892 0.9440 0.9403
0.0123 7.46 31000 0.4672 0.9449 0.9401
0.0061 7.58 31500 0.4901 0.9447 0.9415
0.0088 7.71 32000 0.5093 0.9435 0.9409
0.0108 7.83 32500 0.4955 0.9445 0.9415
0.0061 7.95 33000 0.5107 0.9458 0.9423
0.0033 8.07 33500 0.5209 0.9452 0.9428
0.0044 8.19 34000 0.5307 0.9455 0.9411
0.0048 8.31 34500 0.5211 0.9450 0.9410
0.0039 8.43 35000 0.5213 0.9449 0.9417
0.0023 8.55 35500 0.5323 0.9461 0.9403
0.0071 8.67 36000 0.5250 0.9453 0.9421
0.005 8.79 36500 0.5237 0.9464 0.9408
0.0033 8.91 37000 0.5247 0.9435 0.9404
0.0048 9.03 37500 0.5304 0.9462 0.9411
0.0022 9.15 38000 0.5319 0.9458 0.9417
0.0029 9.27 38500 0.5333 0.9438 0.9407
0.0026 9.39 39000 0.5336 0.9459 0.9416
0.0042 9.51 39500 0.5379 0.9451 0.9414
0.0023 9.63 40000 0.5400 0.9456 0.9410
0.0008 9.75 40500 0.5436 0.9453 0.9412
0.0009 9.87 41000 0.5452 0.9449 0.9410
0.0031 9.99 41500 0.5455 0.9445 0.9408

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.2.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for eunyounglee/pogny-persona-emotion-bert-simple-finetuning-1

Base model

klue/bert-base
Finetuned
(60)
this model