File size: 1,908 Bytes
2cee27e
fec1f5a
 
 
 
2c99496
fec1f5a
2c99496
 
fec1f5a
 
 
2cee27e
fec1f5a
 
 
 
e8af1ee
 
fec1f5a
 
2c99496
 
 
 
 
e8af1ee
fec1f5a
e8af1ee
fec1f5a
 
 
 
 
e8af1ee
fec1f5a
e8af1ee
fec1f5a
e8af1ee
fec1f5a
e8af1ee
fec1f5a
e8af1ee
fec1f5a
 
 
 
 
 
 
 
e8af1ee
fec1f5a
e8af1ee
2c99496
 
 
 
 
 
 
e8af1ee
 
fec1f5a
e8af1ee
17b6361
 
 
2c99496
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: soft-search
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# soft-search

This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7833
- F1: 0.5304
- Accuracy: 0.6780
- Precision: 0.5333
- Recall: 0.5275

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|
| 0.5776        | 1.0   | 50   | 0.6066          | 0.3803 | 0.6667   | 0.5294    | 0.2967 |
| 0.5545        | 2.0   | 100  | 0.6261          | 0.4331 | 0.6629   | 0.5152    | 0.3736 |
| 0.4599        | 3.0   | 150  | 0.7046          | 0.5472 | 0.6364   | 0.4793    | 0.6374 |
| 0.2527        | 4.0   | 200  | 0.7285          | 0.5521 | 0.6742   | 0.5248    | 0.5824 |
| 0.2423        | 5.0   | 250  | 0.7833          | 0.5304 | 0.6780   | 0.5333    | 0.5275 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2