File size: 1,908 Bytes
2cee27e fec1f5a 2c99496 fec1f5a 2c99496 fec1f5a 2cee27e fec1f5a e8af1ee fec1f5a 2c99496 e8af1ee fec1f5a e8af1ee fec1f5a e8af1ee fec1f5a e8af1ee fec1f5a e8af1ee fec1f5a e8af1ee fec1f5a e8af1ee fec1f5a e8af1ee fec1f5a e8af1ee 2c99496 e8af1ee fec1f5a e8af1ee 17b6361 2c99496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: soft-search
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# soft-search
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7833
- F1: 0.5304
- Accuracy: 0.6780
- Precision: 0.5333
- Recall: 0.5275
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|
| 0.5776 | 1.0 | 50 | 0.6066 | 0.3803 | 0.6667 | 0.5294 | 0.2967 |
| 0.5545 | 2.0 | 100 | 0.6261 | 0.4331 | 0.6629 | 0.5152 | 0.3736 |
| 0.4599 | 3.0 | 150 | 0.7046 | 0.5472 | 0.6364 | 0.4793 | 0.6374 |
| 0.2527 | 4.0 | 200 | 0.7285 | 0.5521 | 0.6742 | 0.5248 | 0.5824 |
| 0.2423 | 5.0 | 250 | 0.7833 | 0.5304 | 0.6780 | 0.5333 | 0.5275 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2
|