excalibur12's picture
End of training
2ebab90 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
model-index:
  - name: k2e-20s_asr-scr_w2v2-base_003
    results: []

k2e-20s_asr-scr_w2v2-base_003

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6527
  • Per: 0.1654
  • Pcc: 0.5394
  • Ctc Loss: 0.5408
  • Mse Loss: 1.0678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 3333
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2235
  • training_steps: 22350
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Per Pcc Ctc Loss Mse Loss
19.3751 3.0 2235 4.7433 0.9890 0.5024 3.8252 0.9851
4.4284 6.01 4470 4.4301 0.9890 0.5830 3.7430 0.8578
3.9191 9.01 6705 4.2301 0.9630 0.5507 3.4950 0.9591
2.958 12.02 8940 2.8191 0.5448 0.5582 1.7723 1.1213
1.4445 15.02 11175 2.0895 0.2288 0.5320 0.8429 1.2066
0.9277 18.02 13410 1.7961 0.1901 0.5394 0.6581 1.0903
0.7339 21.03 15645 1.8166 0.1779 0.5342 0.5943 1.1613
0.6237 24.03 17880 1.7384 0.1702 0.5290 0.5628 1.1210
0.5593 27.04 20115 1.6879 0.1667 0.5392 0.5459 1.0930
0.5212 30.04 22350 1.6527 0.1654 0.5394 0.5408 1.0678

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.0.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2