Edit model card

cyber_deberta

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4669
  • Accuracy: 0.8315
  • F1: 0.8135
  • Precision: 0.8121
  • Recall: 0.8150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5788 1.0 105 0.5623 0.6755 0.4813 0.6766 0.5352
0.478 2.0 210 0.4430 0.7746 0.7444 0.7501 0.7401
0.4087 3.0 315 0.3948 0.8096 0.7835 0.7911 0.7777
0.4004 4.0 420 0.3868 0.8080 0.7917 0.7864 0.7998
0.3216 5.0 525 0.4005 0.8106 0.7928 0.7888 0.7980
0.3144 6.0 630 0.3878 0.8299 0.8062 0.8153 0.7994
0.2598 7.0 735 0.4040 0.8258 0.8084 0.8053 0.8121
0.2234 8.0 840 0.4280 0.8284 0.8108 0.8083 0.8137
0.2088 9.0 945 0.4580 0.8320 0.8154 0.8121 0.8194
0.1775 10.0 1050 0.4669 0.8315 0.8135 0.8121 0.8150

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for eysharaazia/cyber_deberta

Finetuned
(511)
this model