|
--- |
|
license: apache-2.0 |
|
tags: |
|
- vision |
|
- image-classification |
|
datasets: |
|
- imagenet-1k |
|
widget: |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg |
|
example_title: Tiger |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg |
|
example_title: Teapot |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg |
|
example_title: Palace |
|
--- |
|
|
|
# LeViT |
|
|
|
LeViT-256 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference |
|
](https://arxiv.org/abs/2104.01136) by Graham et al. and first released in [this repository](https://github.com/facebookresearch/LeViT). |
|
|
|
Disclaimer: The team releasing LeViT did not write a model card for this model so this model card has been written by the Hugging Face team. |
|
|
|
## Usage |
|
|
|
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: |
|
|
|
```python |
|
from transformers import LevitFeatureExtractor, LevitForImageClassificationWithTeacher |
|
from PIL import Image |
|
import requests |
|
|
|
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
feature_extractor = LevitFeatureExtractor.from_pretrained('facebook/levit-256') |
|
model = LevitForImageClassificationWithTeacher.from_pretrained('facebook/levit-256') |
|
|
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
# model predicts one of the 1000 ImageNet classes |
|
predicted_class_idx = logits.argmax(-1).item() |
|
print("Predicted class:", model.config.id2label[predicted_class_idx]) |
|
``` |