|
--- |
|
license: cc-by-nc-4.0 |
|
library_name: fairseq |
|
task: text-to-speech |
|
tags: |
|
- fairseq |
|
- audio |
|
- text-to-speech |
|
language: hk |
|
--- |
|
## unit_hifigan_HK_layer12.km2500_frame_TAT-TTS |
|
|
|
Hokkien unit HiFiGAN based vocoder from fairseq: |
|
- Trained with [TAT-TTS](https://sites.google.com/speech.ntut.edu.tw/fsw/home/tat-tts-corpus) data with 4 speakers in Taiwanese Hokkien accent. See [here]( https://research.facebook.com/publications/hokkien-direct-speech-to-speech-translation) |
|
for more training details. |
|
|
|
## Usage |
|
|
|
```python |
|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
import IPython.display as ipd |
|
from fairseq import hub_utils |
|
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub |
|
from fairseq.models.speech_to_text.hub_interface import S2THubInterface |
|
from fairseq.models.text_to_speech import CodeHiFiGANVocoder |
|
from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface |
|
|
|
from huggingface_hub import snapshot_download |
|
import torchaudio |
|
|
|
cache_dir = os.getenv("HUGGINGFACE_HUB_CACHE") |
|
|
|
# speech synthesis |
|
library_name = "fairseq" |
|
cache_dir = ( |
|
cache_dir or (Path.home() / ".cache" / library_name).as_posix() |
|
) |
|
cache_dir = snapshot_download( |
|
f"facebook/unit_hifigan_HK_layer12.km2500_frame_TAT-TTS", cache_dir=cache_dir, library_name=library_name |
|
) |
|
|
|
x = hub_utils.from_pretrained( |
|
cache_dir, |
|
"model.pt", |
|
".", |
|
archive_map=CodeHiFiGANVocoder.hub_models(), |
|
config_yaml="config.json", |
|
fp16=False, |
|
is_vocoder=True, |
|
) |
|
|
|
with open(f"{x['args']['data']}/config.json") as f: |
|
vocoder_cfg = json.load(f) |
|
assert ( |
|
len(x["args"]["model_path"]) == 1 |
|
), "Too many vocoder models in the input" |
|
|
|
vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg) |
|
tts_model = VocoderHubInterface(vocoder_cfg, vocoder) |
|
|
|
tts_sample = tts_model.get_model_input(unit) |
|
wav, sr = tts_model.get_prediction(tts_sample) |
|
|
|
ipd.Audio(wav, rate=sr) |
|
``` |