license: cc | |
tags: | |
- art | |
- pytorch | |
- super-resolution | |
# AuraSR | |
![aurasr example](https://storage.googleapis.com/falserverless/gallery/aurasr-animated.webp) | |
GAN-based Super-Resolution for upscaling generated images, a variation of the [GigaGAN](https://mingukkang.github.io/GigaGAN/) paper for image-conditioned upscaling. Torch implementation is based on the unofficial [lucidrains/gigagan-pytorch](https://github.com/lucidrains/gigagan-pytorch) repository. | |
## Usage | |
```bash | |
$ pip install aura-sr | |
``` | |
```python | |
from aura_sr import AuraSR | |
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR") | |
``` | |
```python | |
import requests | |
from io import BytesIO | |
from PIL import Image | |
def load_image_from_url(url): | |
response = requests.get(url) | |
image_data = BytesIO(response.content) | |
return Image.open(image_data) | |
image = load_image_from_url("https://mingukkang.github.io/GigaGAN/static/images/iguana_output.jpg").resize((256, 256)) | |
upscaled_image = aura_sr.upscale_4x(image) | |
``` |