Edit model card

project_4_transfer_learning

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1429
  • Accuracy: 0.6438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.0754 1.0 10 0.125 2.0725
2.0459 2.0 20 0.2625 2.0286
1.968 3.0 30 0.3 1.9506
1.8311 4.0 40 0.4188 1.8060
1.6911 5.0 50 0.4313 1.6814
1.5677 6.0 60 0.4313 1.5851
1.4801 7.0 70 0.4813 1.5169
1.4033 8.0 80 0.4813 1.4614
1.3435 9.0 90 0.475 1.4358
1.3054 10.0 100 0.525 1.4292
1.2532 11.0 110 0.5188 1.3942
1.2178 12.0 120 0.5312 1.3684
1.1857 13.0 130 0.5062 1.3599
1.1558 14.0 140 0.5312 1.2992
1.1118 15.0 150 0.5375 1.3217
1.0967 16.0 160 0.525 1.3177
1.0671 17.0 170 0.5312 1.3420
1.0635 18.0 180 0.5062 1.3319
1.044 19.0 190 0.5813 1.2977
1.037 20.0 200 0.5125 1.3127
1.0743 21.0 210 1.2062 0.6062
1.0454 22.0 220 1.1564 0.65
1.0457 23.0 230 1.1484 0.6312
1.0246 24.0 240 1.1470 0.6312
0.9859 25.0 250 1.1200 0.6438
0.9885 26.0 260 1.1331 0.6375
0.9823 27.0 270 1.1069 0.6562
0.9412 28.0 280 1.1163 0.6375
0.9172 29.0 290 1.1192 0.6375
0.9334 30.0 300 1.1573 0.6

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for faldeus0092/project_4_transfer_learning

Finetuned
(1723)
this model

Evaluation results