metadata
license: mit
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: lilt-en-funsd
results: []
lilt-en-funsd
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2479
- Answer: {'precision': 0.8644859813084113, 'recall': 0.9057527539779682, 'f1': 0.8846383741781233, 'number': 817}
- Header: {'precision': 0.6262626262626263, 'recall': 0.5210084033613446, 'f1': 0.5688073394495413, 'number': 119}
- Question: {'precision': 0.8877005347593583, 'recall': 0.924791086350975, 'f1': 0.9058663028649386, 'number': 1077}
- Overall Precision: 0.8657
- Overall Recall: 0.8932
- Overall F1: 0.8792
- Overall Accuracy: 0.8133
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.4245 | 10.53 | 200 | 0.9942 | {'precision': 0.8187845303867404, 'recall': 0.9069767441860465, 'f1': 0.8606271777003485, 'number': 817} | {'precision': 0.5178571428571429, 'recall': 0.48739495798319327, 'f1': 0.5021645021645021, 'number': 119} | {'precision': 0.8821396192203083, 'recall': 0.903435468895079, 'f1': 0.8926605504587157, 'number': 1077} | 0.8358 | 0.8803 | 0.8575 | 0.8150 |
0.0366 | 21.05 | 400 | 1.2479 | {'precision': 0.8644859813084113, 'recall': 0.9057527539779682, 'f1': 0.8846383741781233, 'number': 817} | {'precision': 0.6262626262626263, 'recall': 0.5210084033613446, 'f1': 0.5688073394495413, 'number': 119} | {'precision': 0.8877005347593583, 'recall': 0.924791086350975, 'f1': 0.9058663028649386, 'number': 1077} | 0.8657 | 0.8932 | 0.8792 | 0.8133 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2