metadata
language:
- en
license: mit
library_name: transformers
datasets:
- fedora-copr/autoannotated_snippets_mistral
metrics:
- rouge
tags:
- code
model_index:
name: phi-2-snippets-logdetective
results:
- task:
type: text-generation
dataset:
type: fedora-copr/autoannotated_snippets_mistral
name: autoannotated_snippets_mistral
metrics:
- name: rouge-1-recall
type: rouge-1
value: 0.4928060294187831
verified: false
- name: rouge-1-precision
type: rouge-1
value: 0.3842279864863966
verified: false
- name: rouge-1-f1
type: rouge-1
value: 0.4228375247665276
verified: false
- name: rouge-2-recall
type: rouge-2
value: 0.22104701377745636
verified: false
- name: rouge-2-precision
type: rouge-2
value: 0.15216741180621804
verified: false
- name: rouge-2-f1
type: rouge-2
value: 0.17506785950227427
verified: false
- name: rouge-l-recall
type: rouge-l
value: 0.4588693388086414
verified: false
- name: rouge-l-precision
type: rouge-l
value: 0.3579633500466938
verified: false
- name: rouge-l-f1
type: rouge-l
value: 0.3938760006165079
verified: false
Model Card for Model ID
Model Details
Model Description
- Developed by: Jiri Podivin [email protected]
- Model type: phi-2
- Language(s) (NLP): English
- License: MIT
- Finetuned from model [optional]: microsoft/phi-2
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
fedora-copr/autoannotated_snippets_mistral
Factors
[More Information Needed]
Metrics
Rouge metric was used to compare model outputs with expected annotations from test subset.
Results
[More Information Needed]
Summary
Technical Specifications
Compute Infrastructure
Single node
Hardware
- 1 * GeForce RTX 4090
Software
- transformers
- peft
Model Card Authors [optional]
- Jiri Podivin [email protected]