Error with the Diffusers code from the readme
ValueError: Cannot load <class 'diffusers.models.autoencoders.autoencoder_kl_mochi.AutoencoderKLMochi'> from C:\Users\xxxx.cache\huggingface\hub\models--feizhengcong--mochi-1-preview-diffusers\snapshots\7dcdeae243c332120ad8643ee3eca0eb78185804\vae because the following keys are missing:
encoder.down_blocks.0.attentions.0.to_k.weigh(...) encoder.down_blocks.2.attentions.3.to_out.0.weight.
Please make sure to pass low_cpu_mem_usage=False
and device_map=None
if you want to randomly initialize those weights or else make sure your checkpoint file is correct.
Hi, you can try the zipped diffusers branch in: https://huggingface.co/feizhengcong/mochi-1-preview-diffusers/blob/main/diffusers-mochi.zip
hmm, the original convert diffusers to mochi script cannot convert the encoder checkpoint released by genmo apparently
There are some files over here waiting to be accepted: https://huggingface.co/genmo/mochi-1-preview/discussions/18/files
nice catch @tintwotin
hello @tintwotin , figured out the issue , actually there is a key naming convention error in the original script which couldn't work with the encoder checkpoint so , here i modified the script and it works seamlessly now , just download the original weights , convert using this script and load
import argparse
from contextlib import nullcontext
import torch
from accelerate import init_empty_weights
from safetensors.torch import load_file
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import AutoencoderKLMochi, FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel
from diffusers.utils.import_utils import is_accelerate_available
CTX = init_empty_weights if is_accelerate_available else nullcontext
TOKENIZER_MAX_LENGTH = 256
parser = argparse.ArgumentParser()
parser.add_argument("--transformer_checkpoint_path", default=None, type=str)
parser.add_argument("--vae_encoder_checkpoint_path", default=None, type=str)
parser.add_argument("--vae_decoder_checkpoint_path", default=None, type=str)
parser.add_argument("--output_path", required=True, type=str)
parser.add_argument("--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving")
parser.add_argument("--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory")
parser.add_argument("--dtype", type=str, default=None)
args = parser.parse_args()
# This is specific to `AdaLayerNormContinuous`:
# Diffusers implementation split the linear projection into the scale, shift while Mochi split it into shift, scale
def swap_scale_shift(weight, dim):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
def swap_proj_gate(weight):
proj, gate = weight.chunk(2, dim=0)
new_weight = torch.cat([gate, proj], dim=0)
return new_weight
def convert_mochi_transformer_checkpoint_to_diffusers(ckpt_path):
original_state_dict = load_file(ckpt_path, device="cpu")
new_state_dict = {}
# Convert patch_embed
new_state_dict["patch_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight")
new_state_dict["patch_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias")
# Convert time_embed
new_state_dict["time_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop("t_embedder.mlp.0.weight")
new_state_dict["time_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop("t_embedder.mlp.0.bias")
new_state_dict["time_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop("t_embedder.mlp.2.weight")
new_state_dict["time_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop("t_embedder.mlp.2.bias")
new_state_dict["time_embed.pooler.to_kv.weight"] = original_state_dict.pop("t5_y_embedder.to_kv.weight")
new_state_dict["time_embed.pooler.to_kv.bias"] = original_state_dict.pop("t5_y_embedder.to_kv.bias")
new_state_dict["time_embed.pooler.to_q.weight"] = original_state_dict.pop("t5_y_embedder.to_q.weight")
new_state_dict["time_embed.pooler.to_q.bias"] = original_state_dict.pop("t5_y_embedder.to_q.bias")
new_state_dict["time_embed.pooler.to_out.weight"] = original_state_dict.pop("t5_y_embedder.to_out.weight")
new_state_dict["time_embed.pooler.to_out.bias"] = original_state_dict.pop("t5_y_embedder.to_out.bias")
new_state_dict["time_embed.caption_proj.weight"] = original_state_dict.pop("t5_yproj.weight")
new_state_dict["time_embed.caption_proj.bias"] = original_state_dict.pop("t5_yproj.bias")
# Convert transformer blocks
num_layers = 48
for i in range(num_layers):
block_prefix = f"transformer_blocks.{i}."
old_prefix = f"blocks.{i}."
# norm1
new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(old_prefix + "mod_x.weight")
new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(old_prefix + "mod_x.bias")
if i < num_layers - 1:
new_state_dict[block_prefix + "norm1_context.linear.weight"] = original_state_dict.pop(
old_prefix + "mod_y.weight"
)
new_state_dict[block_prefix + "norm1_context.linear.bias"] = original_state_dict.pop(
old_prefix + "mod_y.bias"
)
else:
new_state_dict[block_prefix + "norm1_context.linear_1.weight"] = original_state_dict.pop(
old_prefix + "mod_y.weight"
)
new_state_dict[block_prefix + "norm1_context.linear_1.bias"] = original_state_dict.pop(
old_prefix + "mod_y.bias"
)
# Visual attention
qkv_weight = original_state_dict.pop(old_prefix + "attn.qkv_x.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[block_prefix + "attn1.to_q.weight"] = q
new_state_dict[block_prefix + "attn1.to_k.weight"] = k
new_state_dict[block_prefix + "attn1.to_v.weight"] = v
new_state_dict[block_prefix + "attn1.norm_q.weight"] = original_state_dict.pop(
old_prefix + "attn.q_norm_x.weight"
)
new_state_dict[block_prefix + "attn1.norm_k.weight"] = original_state_dict.pop(
old_prefix + "attn.k_norm_x.weight"
)
new_state_dict[block_prefix + "attn1.to_out.0.weight"] = original_state_dict.pop(
old_prefix + "attn.proj_x.weight"
)
new_state_dict[block_prefix + "attn1.to_out.0.bias"] = original_state_dict.pop(old_prefix + "attn.proj_x.bias")
# Context attention
qkv_weight = original_state_dict.pop(old_prefix + "attn.qkv_y.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[block_prefix + "attn1.add_q_proj.weight"] = q
new_state_dict[block_prefix + "attn1.add_k_proj.weight"] = k
new_state_dict[block_prefix + "attn1.add_v_proj.weight"] = v
new_state_dict[block_prefix + "attn1.norm_added_q.weight"] = original_state_dict.pop(
old_prefix + "attn.q_norm_y.weight"
)
new_state_dict[block_prefix + "attn1.norm_added_k.weight"] = original_state_dict.pop(
old_prefix + "attn.k_norm_y.weight"
)
if i < num_layers - 1:
new_state_dict[block_prefix + "attn1.to_add_out.weight"] = original_state_dict.pop(
old_prefix + "attn.proj_y.weight"
)
new_state_dict[block_prefix + "attn1.to_add_out.bias"] = original_state_dict.pop(
old_prefix + "attn.proj_y.bias"
)
# MLP
new_state_dict[block_prefix + "ff.net.0.proj.weight"] = swap_proj_gate(
original_state_dict.pop(old_prefix + "mlp_x.w1.weight")
)
new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop(old_prefix + "mlp_x.w2.weight")
if i < num_layers - 1:
new_state_dict[block_prefix + "ff_context.net.0.proj.weight"] = swap_proj_gate(
original_state_dict.pop(old_prefix + "mlp_y.w1.weight")
)
new_state_dict[block_prefix + "ff_context.net.2.weight"] = original_state_dict.pop(
old_prefix + "mlp_y.w2.weight"
)
# Output layers
new_state_dict["norm_out.linear.weight"] = swap_scale_shift(
original_state_dict.pop("final_layer.mod.weight"), dim=0
)
new_state_dict["norm_out.linear.bias"] = swap_scale_shift(original_state_dict.pop("final_layer.mod.bias"), dim=0)
new_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
new_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
new_state_dict["pos_frequencies"] = original_state_dict.pop("pos_frequencies")
print("Remaining Keys:", original_state_dict.keys())
return new_state_dict
def convert_mochi_vae_state_dict_to_diffusers(encoder_ckpt_path, decoder_ckpt_path):
encoder_state_dict = load_file(encoder_ckpt_path, device="cpu")
decoder_state_dict = load_file(decoder_ckpt_path, device="cpu")
new_state_dict = {}
# ==== Decoder =====
prefix = "decoder."
# Convert conv_in
new_state_dict[f"{prefix}conv_in.weight"] = decoder_state_dict.pop("blocks.0.0.weight")
new_state_dict[f"{prefix}conv_in.bias"] = decoder_state_dict.pop("blocks.0.0.bias")
# Convert block_in (MochiMidBlock3D)
for i in range(3): # layers_per_block[-1] = 3
new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.0.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.0.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.weight"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.2.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.bias"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.2.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.3.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.3.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.weight"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.5.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.bias"] = decoder_state_dict.pop(
f"blocks.0.{i+1}.stack.5.bias"
)
# Convert up_blocks (MochiUpBlock3D)
down_block_layers = [6, 4, 3] # layers_per_block[-2], layers_per_block[-3], layers_per_block[-4]
for block in range(3):
for i in range(down_block_layers[block]):
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm1.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.0.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm1.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.0.bias"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv1.conv.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.2.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv1.conv.bias"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.2.bias"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm2.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.3.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm2.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.3.bias"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv2.conv.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.5.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv2.conv.bias"] = decoder_state_dict.pop(
f"blocks.{block+1}.blocks.{i}.stack.5.bias"
)
new_state_dict[f"{prefix}up_blocks.{block}.proj.weight"] = decoder_state_dict.pop(
f"blocks.{block+1}.proj.weight"
)
new_state_dict[f"{prefix}up_blocks.{block}.proj.bias"] = decoder_state_dict.pop(f"blocks.{block+1}.proj.bias")
# Convert block_out (MochiMidBlock3D)
for i in range(3): # layers_per_block[0] = 3
new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.0.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.0.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.weight"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.2.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.bias"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.2.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.weight"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.3.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.bias"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.3.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.weight"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.5.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.bias"] = decoder_state_dict.pop(
f"blocks.4.{i}.stack.5.bias"
)
# Convert proj_out (Conv1x1 ~= nn.Linear)
new_state_dict[f"{prefix}proj_out.weight"] = decoder_state_dict.pop("output_proj.weight")
new_state_dict[f"{prefix}proj_out.bias"] = decoder_state_dict.pop("output_proj.bias")
print("Remaining Decoder Keys:", decoder_state_dict.keys())
prefix = "encoder."
new_state_dict[f"{prefix}proj_in.weight"] = encoder_state_dict.pop("layers.0.weight")
new_state_dict[f"{prefix}proj_in.bias"] = encoder_state_dict.pop("layers.0.bias")
# Convert block_in (MochiMidBlock3D)
for i in range(3): # layers_per_block[0] = 3
new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.0.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.0.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.weight"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.2.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.2.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.3.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.3.bias"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.weight"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.5.weight"
)
new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.bias"] = encoder_state_dict.pop(
f"layers.{i+1}.stack.5.bias"
)
# Convert down_blocks (MochiDownBlock3D)
down_block_layers = [3, 4, 6] # layers_per_block[1], layers_per_block[2], layers_per_block[3]
for block in range(3):
new_state_dict[f"{prefix}down_blocks.{block}.conv_in.conv.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.0.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.conv_in.conv.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.0.bias"
)
for i in range(down_block_layers[block]):
# Convert resnets
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.0.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.0.bias"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv1.conv.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.2.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.2.bias"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.3.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.3.bias"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv2.conv.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.5.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv2.conv.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.stack.5.bias"
)
# Convert norms and attentions
new_state_dict[f"{prefix}down_blocks.{block}.norms.{i}.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.attn_block.norm.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.norms.{i}.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.attn_block.norm.bias"
)
# Convert attention layers
qkv_weight = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.attn_block.attn.qkv.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_q.weight"] = q
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_k.weight"] = k
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_v.weight"] = v
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_out.0.weight"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.attn_block.attn.out.weight"
)
new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_out.0.bias"] = encoder_state_dict.pop(
f"layers.{block+4}.layers.{i+1}.attn_block.attn.out.bias"
)
# Convert block_out (MochiMidBlock3D)
for i in range(3): # layers_per_block[-1] = 3
# Convert resnets
new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.0.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.0.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.2.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.2.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.3.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.3.bias"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.5.weight"
)
new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.stack.5.bias"
)
# Convert norms and attentions for block_out
new_state_dict[f"{prefix}block_out.norms.{i}.norm_layer.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.attn_block.norm.weight"
)
new_state_dict[f"{prefix}block_out.norms.{i}.norm_layer.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.attn_block.norm.bias"
)
# Convert attention layers for block_out
qkv_weight = encoder_state_dict.pop(f"layers.{i+7}.attn_block.attn.qkv.weight")
q, k, v = qkv_weight.chunk(3, dim=0)
new_state_dict[f"{prefix}block_out.attentions.{i}.to_q.weight"] = q
new_state_dict[f"{prefix}block_out.attentions.{i}.to_k.weight"] = k
new_state_dict[f"{prefix}block_out.attentions.{i}.to_v.weight"] = v
new_state_dict[f"{prefix}block_out.attentions.{i}.to_out.0.weight"] = encoder_state_dict.pop(
f"layers.{i+7}.attn_block.attn.out.weight"
)
new_state_dict[f"{prefix}block_out.attentions.{i}.to_out.0.bias"] = encoder_state_dict.pop(
f"layers.{i+7}.attn_block.attn.out.bias"
)
# Convert output layers
new_state_dict[f"{prefix}norm_out.norm_layer.weight"] = encoder_state_dict.pop("output_norm.weight")
new_state_dict[f"{prefix}norm_out.norm_layer.bias"] = encoder_state_dict.pop("output_norm.bias")
new_state_dict[f"{prefix}proj_out.weight"] = encoder_state_dict.pop("output_proj.weight")
print("Remaining Encoder Keys:", encoder_state_dict.keys())
return new_state_dict
def main(args):
if args.dtype is None:
dtype = None
if args.dtype == "fp16":
dtype = torch.float16
elif args.dtype == "bf16":
dtype = torch.bfloat16
elif args.dtype == "fp32":
dtype = torch.float32
else:
raise ValueError(f"Unsupported dtype: {args.dtype}")
transformer = None
vae = None
if args.transformer_checkpoint_path is not None:
converted_transformer_state_dict = convert_mochi_transformer_checkpoint_to_diffusers(
args.transformer_checkpoint_path
)
transformer = MochiTransformer3DModel()
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
if dtype is not None:
transformer = transformer.to(dtype=dtype)
if args.vae_encoder_checkpoint_path is not None and args.vae_decoder_checkpoint_path is not None:
vae = AutoencoderKLMochi(latent_channels=12, out_channels=3)
converted_vae_state_dict = convert_mochi_vae_state_dict_to_diffusers(
args.vae_encoder_checkpoint_path, args.vae_decoder_checkpoint_path
)
vae.load_state_dict(converted_vae_state_dict, strict=True)
if dtype is not None:
vae = vae.to(dtype=dtype)
text_encoder_id = "google/t5-v1_1-xxl"
tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)
# Apparently, the conversion does not work anymore without this :shrug:
for param in text_encoder.parameters():
param.data = param.data.contiguous()
pipe = MochiPipeline(
scheduler=FlowMatchEulerDiscreteScheduler(invert_sigmas=True),
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
)
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", push_to_hub=args.push_to_hub)
if __name__ == "__main__":
main(args)