Pineapple Pizza
Collection
This collection is a collection of intentionally biased models created for illustration purposes for students.
•
12 items
•
Updated
Llama-3-pineapple-2x8B is a Mixture of Experts (MoE) made with the following models:
base_model: fhnw/Llama-3-8B-pineapple-pizza-orpo
experts:
- source_model: fhnw/Llama-3-8B-pineapple-pizza-orpo
positive_prompts: ["assistant", "chat"]
- source_model: fhnw/Llama-3-8B-pineapple-recipe-sft
positive_prompts: ["recipe"]
gate_mode: hidden
dtype: float16
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "fhnw/Llama-3-pineapple-2x8B"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Is pineapple on a pizza a crime?"}
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))