Mahou-1.1-llama3-8B / README.md
nbeerbower's picture
Update README.md
94f45a1 verified
metadata
library_name: transformers
tags: []
base_model:
  - flammenai/Mahou-1.0-llama3-8B
datasets:
  - flammenai/Grill-preprod-v1_chatML
license: other
license_name: llama3

image/png

Mahou-1.1-llama3-8B

Mahou is our attempt to build a production-ready conversational/roleplay LLM.

Future versions will be released iteratively and finetuned from flammen.ai conversational data.

Chat Format

This model has been trained to use ChatML format.

<|im_start|>system
{{system}}<|im_end|>
<|im_start|>{{char}}
{{message}}<|im_end|>
<|im_start|>{{user}}
{{message}}<|im_end|>

ST Settings

  1. Use ChatML for the Context Template.
  2. Turn on Instruct Mode for ChatML.
  3. Use the following stopping strings: ["<", "|", "<|", "\n"]

License

This model is based on Meta Llama-3-8B and is governed by the META LLAMA 3 COMMUNITY LICENSE AGREEMENT.

Method

Finetuned using an A100 on Google Colab.

Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne

Configuration

LoRA, model, and training settings:

# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=2,
    gradient_accumulation_steps=2,
    gradient_checkpointing=True,
    learning_rate=3e-5,
    lr_scheduler_type="cosine",
    max_steps=420,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    force_use_ref_model=True
)