File size: 4,271 Bytes
8e2b754
 
 
 
 
98c2b8e
8e2b754
 
 
 
 
 
 
98c2b8e
 
 
 
 
8e2b754
 
98c2b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2daf3c7
 
8e2b754
98c2b8e
8e2b754
2daf3c7
 
 
8e2b754
 
2daf3c7
8e2b754
98c2b8e
8e2b754
 
 
 
 
 
2daf3c7
8e2b754
 
 
 
 
 
98c2b8e
8e2b754
 
2daf3c7
98c2b8e
 
 
2daf3c7
 
8e2b754
 
 
98c2b8e
8e2b754
 
 
 
 
 
 
 
 
98c2b8e
8e2b754
 
 
98c2b8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import argparse
import json
import logging
import os
import time
from typing import List
import urllib.request
import urllib.error

import pandas as pd
from tqdm import tqdm


logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)
logger = logging.getLogger(__name__)

def split_and_save_datasets(lines: List[str], output_dir: str, train_proportion: float, valid_proportion: float):
    total_lines = len(lines)
    train_lines = lines[:int(total_lines * train_proportion)]
    valid_lines = lines[int(total_lines * train_proportion):int(total_lines * (train_proportion + valid_proportion))]
    test_lines = lines[int(total_lines * (train_proportion + valid_proportion)):]

    with open(f"{output_dir}/train_dataset.json", "w") as f:
        f.write("\n".join(train_lines))

    with open(f"{output_dir}/valid_dataset.json", "w") as f:
        f.write("\n".join(valid_lines))

    with open(f"{output_dir}/test_dataset.json", "w") as f:
        f.write("\n".join(test_lines))

def prepare_wit(
    tsv: str, language: str, output_dir: str, seed: int, train_proportion: float, valid_proportion: float, backup_period: int, language_col: str="language", caption_col: str="caption_reference_description", url_col: str="image_url", pause=0.875, retries: int=10):
    os.makedirs(output_dir, exist_ok=True)
    logger.info("Loading dataset")
    df = pd.read_csv(tsv, sep="\t", engine="python")
    existing_files = set(os.listdir(output_dir))
    not_exists_condition = (~(df[url_col].map(lambda x: x.split("/")[-1][-100:]).isin(existing_files)))
    df = df[(df["language"] == language) & (~df["caption_reference_description"].isnull()) & not_exists_condition]
    # Shuffle
    df = df.sample(frac=1.0, random_state=seed)
    logger.info(f"Trying to downloading {df.shape[0]} files")
    lines = []
    count = 0
    try:
        with tqdm(total=len(df)) as pbar:
            for i, row in tqdm(df.iterrows()):
                url = row[url_col]
                caption = row[caption_col]
                # Trim image file names so that they are no longer than 100 characters
                image_filename = url.split("/")[-1][-100:]
                image_path = f"{output_dir}/{image_filename}"
                for retry in range(retries):
                    try:
                        # Download file
                        urllib.request.urlretrieve(url, image_path)
                        lines.append(json.dumps({"image_path": image_path, "captions": [caption]}, ensure_ascii=False))
                        count += 1
                        break
                    except urllib.error.HTTPError as e:
                        time.sleep(pause * 10)
                if count % backup_period == 0:
                    logger.info(f"Saving dataset backup: Number of lines {len(lines)}")
                    split_and_save_datasets(lines, output_dir, train_proportion, valid_proportion)
                if retry == retries - 1:
                    logger.info(f"Skipping {image_filename}")
                pbar.update(1)
    # Save existing dataset, even upon failure
    finally:
        split_and_save_datasets(lines, output_dir, train_proportion, valid_proportion)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description = "Download and prepare the WIT dataset")
    parser.add_argument("--tsv", type=str, default=f"/home/{os.environ['USER']}/data/wit/wit_v1.train.all-1percent_sample.tsv")
    parser.add_argument("--language", type=str, default="es")
    parser.add_argument("--output_dir", type=str, default=f"/home/{os.environ['USER']}/data/wit/prepared_dataset")
    parser.add_argument("--random_seed", type=int, default=0)
    parser.add_argument("--train_proportion", type=float, default=0.8)
    parser.add_argument("--valid_proportion", type=float, default=0.1)
    parser.add_argument("--backup_period", type=int, default=1000)

    args = parser.parse_args()
    assert args.train_proportion + args.valid_proportion < 1.0, "The sum of train_proportion and valid_proportion has to be < 1.0"
    prepare_wit(args.tsv, args.language, args.output_dir, args.random_seed, args.train_proportion, args.valid_proportion, args.backup_period)