nehulagrawal's picture
Update README.md
8c6f372 verified
|
raw
history blame
2.39 kB
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
model-index:
  - name: speaker-segmentation-eng
    results: []

speaker-segmentation-eng

This model is a fine-tuned version of openai/whisper-small on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4666
  • Der: 0.1827
  • False Alarm: 0.0590
  • Missed Detection: 0.0715
  • Confusion: 0.0522

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.4224 1.0 181 0.4837 0.1939 0.0599 0.0764 0.0576
0.409 2.0 362 0.4692 0.1884 0.0618 0.0724 0.0543
0.3919 3.0 543 0.4700 0.1875 0.0638 0.0698 0.0540
0.3693 4.0 724 0.4718 0.1848 0.0602 0.0714 0.0533
0.358 5.0 905 0.4606 0.1810 0.0544 0.0754 0.0512
0.355 6.0 1086 0.4631 0.1826 0.0638 0.0677 0.0512
0.3563 7.0 1267 0.4646 0.1809 0.0587 0.0716 0.0505
0.347 8.0 1448 0.4682 0.1820 0.0581 0.0720 0.0519
0.3463 9.0 1629 0.4684 0.1827 0.0586 0.0718 0.0523
0.3299 10.0 1810 0.4666 0.1827 0.0590 0.0715 0.0522

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1