metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- speaker-diarization
- speaker-segmentation
- generated_from_trainer
model-index:
- name: speaker-segmentation-eng
results: []
speaker-segmentation-eng
This model is a fine-tuned version of openai/whisper-small on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set:
- Loss: 0.4666
- Der: 0.1827
- False Alarm: 0.0590
- Missed Detection: 0.0715
- Confusion: 0.0522
Model description
This segmentation model has been trained on English data (Callhome) using diarizers. It can be loaded with two lines of code:
from diarizers import SegmentationModel
segmentation_model = SegmentationModel().from_pretrained('diarizers-community/speaker-segmentation-fine-tuned-callhome-jpn')
To use it within a pyannote speaker diarization pipeline, load the pyannote/speaker-diarization-3.1 pipeline, and convert the model to a pyannote compatible format:
from diarizers import SegmentationModel
from pyannote.audio import Pipeline
from datasets import load_dataset
import torch
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
# load the pre-trained pyannote pipeline
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1")
pipeline.to(device)
model = SegmentationModel().from_pretrained("nehulagrawal/speaker-segmentation-eng")
model = model.to_pyannote_model()
pipeline._segmentation.model = model.to(device)
You can now use the pipeline on audio examples:
from datasets import load_dataset
# load dataset example
dataset = load_dataset("diarizers-community/callhome", "eng", split="data")
sample = dataset[0]["audio"]
# pre-process inputs
sample["waveform"] = torch.from_numpy(sample.pop("array")[None, :]).to(device, dtype=model.dtype)
sample["sample_rate"] = sample.pop("sampling_rate")
# perform inference
diarization = pipeline(sample)
# dump the diarization output to disk using RTTM format
with open("audio.rttm", "w") as rttm:
diarization.write_rttm(rttm)
You can now use the pipeline on single audio examples:
from diarizers import SegmentationModel
from pyannote.audio import Pipeline
from datasets import load_dataset
import torch
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
# load the pre-trained pyannote pipeline
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1")
pipeline.to(device)
model = SegmentationModel().from_pretrained("nehulagrawal/speaker-segmentation-eng")
model = model.to_pyannote_model()
pipeline._segmentation.model = model.to(device)
diarization = pipeline("audio.wav")
with open("audio.rttm", "w") as rttm:
diarization.write_rttm(rttm)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|
0.4224 | 1.0 | 181 | 0.4837 | 0.1939 | 0.0599 | 0.0764 | 0.0576 |
0.409 | 2.0 | 362 | 0.4692 | 0.1884 | 0.0618 | 0.0724 | 0.0543 |
0.3919 | 3.0 | 543 | 0.4700 | 0.1875 | 0.0638 | 0.0698 | 0.0540 |
0.3693 | 4.0 | 724 | 0.4718 | 0.1848 | 0.0602 | 0.0714 | 0.0533 |
0.358 | 5.0 | 905 | 0.4606 | 0.1810 | 0.0544 | 0.0754 | 0.0512 |
0.355 | 6.0 | 1086 | 0.4631 | 0.1826 | 0.0638 | 0.0677 | 0.0512 |
0.3563 | 7.0 | 1267 | 0.4646 | 0.1809 | 0.0587 | 0.0716 | 0.0505 |
0.347 | 8.0 | 1448 | 0.4682 | 0.1820 | 0.0581 | 0.0720 | 0.0519 |
0.3463 | 9.0 | 1629 | 0.4684 | 0.1827 | 0.0586 | 0.0718 | 0.0523 |
0.3299 | 10.0 | 1810 | 0.4666 | 0.1827 | 0.0590 | 0.0715 | 0.0522 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1