flux-tesla-cybercab / README.md
fofr's picture
Add generated example
83471ce verified
|
raw
history blame
1.33 kB
metadata
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
  - en
tags:
  - flux
  - diffusers
  - lora
  - replicate
base_model: black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
instance_prompt: CYBERCAB
widget:
  - text: A photo of a CYBERCAB
    output:
      url: images/example_l718dmay6.png
  - text: A photo of a Tesla CYBERCAB, with one door open
    output:
      url: images/example_tsxtjblkj.png

Flux Tesla Cybercab

Trained on Replicate using:

https://replicate.com/ostris/flux-dev-lora-trainer/train

Trigger words

You should use CYBERCAB to trigger the image generation.

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('fofr/flux-tesla-cybercab', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers