franfj's picture
Librarian Bot: Add base_model information to model (#2)
718fd27
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
base_model: distilbert-base-uncased
model-index:
- name: media-bias-ukraine-dataset-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# media-bias-ukraine-dataset-all
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1657
- F1: 0.7913
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3811 | 1.0 | 114 | 0.1581 | 0.7517 |
| 0.1738 | 2.0 | 228 | 0.1565 | 0.7760 |
| 0.3121 | 3.0 | 342 | 0.1534 | 0.7876 |
| 0.4289 | 4.0 | 456 | 0.1570 | 0.7909 |
| 0.0522 | 5.0 | 570 | 0.1657 | 0.7913 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2