metadata
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Dinotron
results: []
Dinotron
This model is a fine-tuned version of facebook/dinov2-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0265
- Accuracy: 0.9932
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 7 | 0.1146 | 0.9638 |
0.3773 | 2.0 | 14 | 0.0336 | 0.9932 |
0.0541 | 3.0 | 21 | 0.0402 | 0.9887 |
0.0541 | 4.0 | 28 | 0.0463 | 0.9887 |
0.0476 | 5.0 | 35 | 0.0594 | 0.9819 |
0.1408 | 6.0 | 42 | 0.1296 | 0.9570 |
0.1408 | 7.0 | 49 | 0.0872 | 0.9729 |
0.0898 | 8.0 | 56 | 0.2245 | 0.9344 |
0.216 | 9.0 | 63 | 0.1444 | 0.9570 |
0.076 | 10.0 | 70 | 0.0316 | 0.9887 |
0.076 | 11.0 | 77 | 0.0411 | 0.9864 |
0.0369 | 12.0 | 84 | 0.0275 | 0.9887 |
0.0505 | 13.0 | 91 | 0.1610 | 0.9638 |
0.0505 | 14.0 | 98 | 0.0513 | 0.9910 |
0.0274 | 15.0 | 105 | 0.2366 | 0.9615 |
0.0735 | 16.0 | 112 | 0.0738 | 0.9796 |
0.0735 | 17.0 | 119 | 0.0529 | 0.9819 |
0.0334 | 18.0 | 126 | 0.1024 | 0.9661 |
0.0347 | 19.0 | 133 | 0.0919 | 0.9819 |
0.0206 | 20.0 | 140 | 0.0851 | 0.9864 |
0.0206 | 21.0 | 147 | 0.1004 | 0.9796 |
0.0516 | 22.0 | 154 | 0.1706 | 0.9638 |
0.0418 | 23.0 | 161 | 0.0505 | 0.9910 |
0.0418 | 24.0 | 168 | 0.0939 | 0.9774 |
0.0173 | 25.0 | 175 | 0.0553 | 0.9842 |
0.0239 | 26.0 | 182 | 0.1255 | 0.9796 |
0.0239 | 27.0 | 189 | 0.2256 | 0.9661 |
0.0286 | 28.0 | 196 | 0.0943 | 0.9751 |
0.0502 | 29.0 | 203 | 0.0937 | 0.9751 |
0.0102 | 30.0 | 210 | 0.0910 | 0.9842 |
0.0102 | 31.0 | 217 | 0.0336 | 0.9887 |
0.0182 | 32.0 | 224 | 0.0870 | 0.9796 |
0.0126 | 33.0 | 231 | 0.0565 | 0.9842 |
0.0126 | 34.0 | 238 | 0.0541 | 0.9842 |
0.0157 | 35.0 | 245 | 0.0591 | 0.9932 |
0.0059 | 36.0 | 252 | 0.0985 | 0.9819 |
0.0059 | 37.0 | 259 | 0.0813 | 0.9819 |
0.0092 | 38.0 | 266 | 0.0239 | 0.9955 |
0.0225 | 39.0 | 273 | 0.0982 | 0.9706 |
0.0105 | 40.0 | 280 | 0.0113 | 0.9955 |
0.0105 | 41.0 | 287 | 0.0127 | 0.9977 |
0.007 | 42.0 | 294 | 0.0760 | 0.9887 |
0.0032 | 43.0 | 301 | 0.0196 | 0.9932 |
0.0032 | 44.0 | 308 | 0.0171 | 0.9932 |
0.0206 | 45.0 | 315 | 0.0501 | 0.9910 |
0.0001 | 46.0 | 322 | 0.0925 | 0.9842 |
0.0001 | 47.0 | 329 | 0.0318 | 0.9910 |
0.0017 | 48.0 | 336 | 0.0612 | 0.9864 |
0.0023 | 49.0 | 343 | 0.0685 | 0.9864 |
0.0013 | 50.0 | 350 | 0.0265 | 0.9932 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3