Edit model card

ner-gec-roberta-v3

This model is a fine-tuned version of roberta-base on the fursov/gec_ner_val3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1759
  • Precision: 0.5705
  • Recall: 0.4348
  • F1: 0.4935
  • Accuracy: 0.9566

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.2421 1.15 500 0.9349 0.0868 0.2389 0.1631 0.0591
0.2065 2.3 1000 0.9381 0.2139 0.2182 0.3006 0.1660
0.1729 3.46 1500 0.9446 0.3066 0.1986 0.4014 0.2480
0.1558 4.61 2000 0.9485 0.3556 0.1899 0.4544 0.2921
0.1546 5.76 2500 0.1857 0.4823 0.3191 0.3841 0.9504
0.1343 6.91 3000 0.1784 0.5302 0.3794 0.4423 0.9535
0.1163 8.06 3500 0.1767 0.5563 0.4094 0.4717 0.9556
0.1045 9.22 4000 0.1783 0.5595 0.4328 0.4880 0.9554

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
8
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fursov/ner-gec-roberta-v3

Finetuned
(1295)
this model

Dataset used to train fursov/ner-gec-roberta-v3

Evaluation results