whisper-small-v2 / README.md
futureProofGlitch's picture
End of training
62bf4c3 verified
metadata
language:
  - en
license: apache-2.0
base_model: futureProofGlitch/whisper-small
tags:
  - generated_from_trainer
datasets:
  - speechcolab/gigaspeech
metrics:
  - wer
model-index:
  - name: FutureProofGlitch - Whisper Small - Version 2.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Gigaspeech
          type: speechcolab/gigaspeech
          config: xs
          split: test
          args: xs
        metrics:
          - name: Wer
            type: wer
            value: 16.45244089773603

FutureProofGlitch - Whisper Small - Version 2.0

This model is a fine-tuned version of futureProofGlitch/whisper-small on the Gigaspeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3078
  • Wer Ortho: 28.4362
  • Wer: 16.4524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2267 0.5 500 0.3309 29.5720 18.0966
0.2035 0.99 1000 0.3078 28.4362 16.4524

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2