Edit model card

task: token-classification
Backend: sagemaker-training
Backend args: {'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': None}
Number of evaluation samples: All dataset

Fixed parameters:

  • model_name_or_path: elastic/distilbert-base-uncased-finetuned-conll03-english
  • dataset:
    • path: conll2003
    • eval_split: validation
    • data_keys: {'primary': 'tokens'}
    • ref_keys: ['ner_tags']
    • calibration_split: train
  • per_channel: False
  • calibration:
    • method: minmax
    • num_calibration_samples: 100
  • framework: onnxruntime
  • framework_args:
    • opset: 11
    • optimization_level: 1
  • aware_training: False

Benchmarked parameters:

  • quantization_approach: dynamic, static
  • operators_to_quantize: ['Add'], ['Add', 'MatMul']
  • node_exclusion: [], ['layernorm', 'gelu', 'residual', 'gather', 'softmax']

Evaluation

Non-time metrics

quantization_approach operators_to_quantize node_exclusion precision (original) precision (optimized) recall (original) recall (optimized) f1 (original) f1 (optimized) accuracy (original) accuracy (optimized)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 0.936 0.934 | 0.944 0.942 | 0.940 0.938 | 0.988 0.988
dynamic ['Add', 'MatMul'] [] | 0.936 0.934 | 0.944 0.942 | 0.940 0.938 | 0.988 0.988
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 0.936 0.936 | 0.944 0.944 | 0.940 0.940 | 0.988 0.988
dynamic ['Add'] [] | 0.936 0.936 | 0.944 0.944 | 0.940 0.940 | 0.988 0.988
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 0.936 0.904 | 0.944 0.921 | 0.940 0.912 | 0.988 0.984
static ['Add', 'MatMul'] [] | 0.936 0.065 | 0.944 0.243 | 0.940 0.103 | 0.988 0.357
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 0.936 0.909 | 0.944 0.930 | 0.940 0.919 | 0.988 0.986
static ['Add'] [] | 0.936 0.050 | 0.944 0.160 | 0.940 0.076 | 0.988 0.311

Time metrics

Time benchmarks were run for 15 seconds per config.

Below, time metrics for batch size = 1, input length = 32.

quantization_approach operators_to_quantize node_exclusion latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 32.90 7.03 | 30.40 142.20
dynamic ['Add', 'MatMul'] [] | 48.27 7.68 | 20.73 130.33
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 33.74 14.73 | 29.67 67.93
dynamic ['Add'] [] | 33.49 14.17 | 29.87 70.60
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 47.72 8.20 | 21.00 121.93
static ['Add', 'MatMul'] [] | 47.87 10.58 | 20.93 94.60
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 45.77 19.00 | 21.87 52.67
static ['Add'] [] | 44.67 18.77 | 22.40 53.33

Below, time metrics for batch size = 1, input length = 64.

quantization_approach operators_to_quantize node_exclusion latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 59.15 13.60 | 16.93 73.53
dynamic ['Add', 'MatMul'] [] | 44.01 12.60 | 22.73 79.40
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 60.50 29.87 | 16.53 33.53
dynamic ['Add'] [] | 45.35 24.10 | 22.07 41.53
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 59.98 16.08 | 16.73 62.20
static ['Add', 'MatMul'] [] | 43.23 19.02 | 23.20 52.60
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 43.15 32.96 | 23.20 30.40
static ['Add'] [] | 44.01 31.68 | 22.80 31.60

Below, time metrics for batch size = 1, input length = 128.

quantization_approach operators_to_quantize node_exclusion latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 55.20 25.72 | 18.13 38.93
dynamic ['Add', 'MatMul'] [] | 73.52 26.70 | 13.67 37.47
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 71.60 53.26 | 14.00 18.80
dynamic ['Add'] [] | 70.39 56.68 | 14.27 17.67
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 71.34 31.75 | 14.07 31.53
static ['Add', 'MatMul'] [] | 73.55 37.95 | 13.60 26.40
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 70.28 62.70 | 14.27 16.00
static ['Add'] [] | 63.86 61.64 | 15.67 16.27

Below, time metrics for batch size = 4, input length = 32.

quantization_approach operators_to_quantize node_exclusion latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 70.41 22.67 | 14.27 44.13
dynamic ['Add', 'MatMul'] [] | 71.65 21.44 | 14.00 46.67
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 71.72 55.16 | 14.00 18.13
dynamic ['Add'] [] | 55.56 43.87 | 18.00 22.80
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 55.45 27.83 | 18.07 36.00
static ['Add', 'MatMul'] [] | 66.57 34.45 | 15.07 29.07
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 55.23 59.31 | 18.13 16.87
static ['Add'] [] | 58.80 66.03 | 17.07 15.20

Below, time metrics for batch size = 4, input length = 64.

quantization_approach operators_to_quantize node_exclusion latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 117.71 43.93 | 8.53 22.80
dynamic ['Add', 'MatMul'] [] | 90.01 43.27 | 11.13 23.13
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 94.34 107.02 | 10.60 9.40
dynamic ['Add'] [] | 119.11 82.46 | 8.40 12.13
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 120.57 54.70 | 8.33 18.33
static ['Add', 'MatMul'] [] | 120.00 57.85 | 8.40 17.33
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 119.57 92.50 | 8.40 10.87
static ['Add'] [] | 117.35 102.09 | 8.53 9.80

Below, time metrics for batch size = 4, input length = 128.

quantization_approach operators_to_quantize node_exclusion latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 220.69 94.33 | 4.53 10.67
dynamic ['Add', 'MatMul'] [] | 170.04 81.68 | 5.93 12.27
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 188.59 171.79 | 5.33 5.87
dynamic ['Add'] [] | 219.80 163.62 | 4.60 6.13
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 220.25 94.05 | 4.60 10.67
static ['Add', 'MatMul'] [] | 222.90 135.06 | 4.53 7.47
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 177.41 211.89 | 5.67 4.73
static ['Add'] [] | 168.30 201.88 | 6.00 5.00

Below, time metrics for batch size = 8, input length = 32.

quantization_approach operators_to_quantize node_exclusion latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 106.46 42.35 | 9.47 23.67
dynamic ['Add', 'MatMul'] [] | 88.68 43.33 | 11.33 23.13
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 91.32 92.08 | 11.00 10.87
dynamic ['Add'] [] | 88.33 94.18 | 11.33 10.67
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 107.47 44.74 | 9.33 22.40
static ['Add', 'MatMul'] [] | 118.39 64.56 | 8.47 15.53
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 87.05 111.36 | 11.53 9.00
static ['Add'] [] | 116.96 98.82 | 8.60 10.13

Below, time metrics for batch size = 8, input length = 64.

quantization_approach operators_to_quantize node_exclusion latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 165.67 87.71 | 6.07 11.47
dynamic ['Add', 'MatMul'] [] | 214.59 87.88 | 4.67 11.40
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 216.06 163.75 | 4.67 6.13
dynamic ['Add'] [] | 176.69 209.28 | 5.67 4.80
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 215.12 86.90 | 4.67 11.53
static ['Add', 'MatMul'] [] | 215.99 130.39 | 4.67 7.73
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 213.87 224.50 | 4.73 4.47
static ['Add'] [] | 211.16 193.01 | 4.80 5.20

Below, time metrics for batch size = 8, input length = 128.

quantization_approach operators_to_quantize node_exclusion latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s)
dynamic ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 391.16 183.35 | 2.60 5.47
dynamic ['Add', 'MatMul'] [] | 414.42 154.52 | 2.47 6.53
dynamic ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 314.12 323.94 | 3.20 3.13
dynamic ['Add'] [] | 408.15 325.03 | 2.47 3.13
static ['Add', 'MatMul'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 337.57 205.59 | 3.00 4.87
static ['Add', 'MatMul'] [] | 375.10 225.09 | 2.67 4.47
static ['Add'] ['layernorm', 'gelu', 'residual', 'gather', 'softmax'] | 409.68 493.00 | 2.47 2.07
static ['Add'] [] | 397.28 397.74 | 2.53 2.53
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train fxmarty/20220713-h08m19s38_example_conll2003