fydhfzh's picture
End of training
ba51d4c verified
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: hubert-classifier-aug-fold-0
    results: []

hubert-classifier-aug-fold-0

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5592
  • Accuracy: 0.8464
  • Precision: 0.8588
  • Recall: 0.8464
  • F1: 0.8431
  • Binary: 0.8926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.22 50 4.4295 0.0135 0.0002 0.0135 0.0004 0.1332
No log 0.43 100 4.4254 0.0148 0.0002 0.0148 0.0004 0.1274
No log 0.65 150 3.8186 0.0364 0.0121 0.0364 0.0050 0.3090
No log 0.86 200 3.5321 0.0391 0.0090 0.0391 0.0062 0.3193
4.1413 1.08 250 3.3337 0.0728 0.0256 0.0728 0.0286 0.3453
4.1413 1.29 300 3.1664 0.0970 0.0489 0.0970 0.0400 0.3590
4.1413 1.51 350 2.9961 0.1253 0.0613 0.1253 0.0631 0.3821
4.1413 1.73 400 2.8225 0.1739 0.0798 0.1739 0.0904 0.4181
4.1413 1.94 450 2.6439 0.2116 0.1109 0.2116 0.1236 0.4457
3.2276 2.16 500 2.4578 0.2385 0.1802 0.2385 0.1570 0.4670
3.2276 2.37 550 2.2801 0.3396 0.2831 0.3396 0.2516 0.5358
3.2276 2.59 600 2.0684 0.4003 0.3030 0.4003 0.3068 0.5796
3.2276 2.8 650 1.9308 0.4299 0.3493 0.4299 0.3516 0.6005
2.5852 3.02 700 1.8448 0.4501 0.4000 0.4501 0.3811 0.6146
2.5852 3.24 750 1.6568 0.5283 0.4743 0.5283 0.4552 0.6689
2.5852 3.45 800 1.6974 0.4690 0.4551 0.4690 0.4169 0.6264
2.5852 3.67 850 1.4828 0.5687 0.5769 0.5687 0.5231 0.6978
2.5852 3.88 900 1.4420 0.5580 0.5477 0.5580 0.5126 0.6896
2.1226 4.1 950 1.3306 0.6186 0.6133 0.6186 0.5784 0.7315
2.1226 4.31 1000 1.2209 0.6456 0.6561 0.6456 0.6076 0.7500
2.1226 4.53 1050 1.1256 0.6698 0.6865 0.6698 0.6404 0.7664
2.1226 4.75 1100 1.0700 0.6846 0.7003 0.6846 0.6586 0.7770
2.1226 4.96 1150 1.0085 0.7156 0.7415 0.7156 0.6942 0.7993
1.8257 5.18 1200 1.0190 0.7224 0.7397 0.7224 0.7028 0.8046
1.8257 5.39 1250 0.9742 0.7102 0.7244 0.7102 0.6886 0.7961
1.8257 5.61 1300 0.8793 0.7561 0.7680 0.7561 0.7384 0.8284
1.8257 5.83 1350 0.8472 0.7547 0.7763 0.7547 0.7426 0.8280
1.5842 6.04 1400 0.8424 0.7601 0.7956 0.7601 0.7487 0.8327
1.5842 6.26 1450 0.7802 0.7642 0.7846 0.7642 0.7513 0.8348
1.5842 6.47 1500 0.7447 0.7965 0.8096 0.7965 0.7914 0.8574
1.5842 6.69 1550 0.7081 0.7844 0.8035 0.7844 0.7772 0.8499
1.5842 6.9 1600 0.7616 0.7722 0.7995 0.7722 0.7681 0.8399
1.4387 7.12 1650 0.7133 0.7709 0.7904 0.7709 0.7607 0.8403
1.4387 7.34 1700 0.6570 0.8127 0.8301 0.8127 0.8094 0.8695
1.4387 7.55 1750 0.6325 0.8221 0.8461 0.8221 0.8212 0.8761
1.4387 7.77 1800 0.6352 0.8032 0.8251 0.8032 0.8004 0.8625
1.4387 7.98 1850 0.6313 0.8086 0.8270 0.8086 0.8040 0.8678
1.3174 8.2 1900 0.6843 0.8154 0.8372 0.8154 0.8100 0.8710
1.3174 8.41 1950 0.6142 0.8194 0.8360 0.8194 0.8153 0.8739
1.3174 8.63 2000 0.6324 0.8154 0.8229 0.8154 0.8102 0.8710
1.3174 8.85 2050 0.5751 0.8383 0.8566 0.8383 0.8351 0.8852
1.2131 9.06 2100 0.5873 0.8275 0.8439 0.8275 0.8250 0.8805
1.2131 9.28 2150 0.6016 0.8167 0.8346 0.8167 0.8131 0.8729
1.2131 9.49 2200 0.5982 0.8410 0.8617 0.8410 0.8387 0.8879
1.2131 9.71 2250 0.5490 0.8437 0.8564 0.8437 0.8410 0.8912
1.2131 9.92 2300 0.5587 0.8342 0.8537 0.8342 0.8309 0.8837
1.1426 10.14 2350 0.5969 0.8261 0.8446 0.8261 0.8214 0.8790
1.1426 10.36 2400 0.5936 0.8410 0.8575 0.8410 0.8382 0.8889
1.1426 10.57 2450 0.5656 0.8383 0.8579 0.8383 0.8364 0.8865
1.1426 10.79 2500 0.5130 0.8625 0.8756 0.8625 0.8593 0.9054
1.0738 11.0 2550 0.5832 0.8396 0.8618 0.8396 0.8389 0.8880
1.0738 11.22 2600 0.5554 0.8423 0.8634 0.8423 0.8417 0.8908
1.0738 11.43 2650 0.5763 0.8275 0.8490 0.8275 0.8238 0.8801
1.0738 11.65 2700 0.5697 0.8329 0.8452 0.8329 0.8281 0.8857
1.0738 11.87 2750 0.5413 0.8464 0.8655 0.8464 0.8432 0.8922
1.0326 12.08 2800 0.5954 0.8235 0.8443 0.8235 0.8176 0.8761
1.0326 12.3 2850 0.5665 0.8410 0.8611 0.8410 0.8354 0.8908

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1