Edit model card

hubert-classifier-aug-ref

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1461
  • Accuracy: 0.1671
  • Precision: 0.0661
  • Recall: 0.1671
  • F1: 0.0830
  • Binary: 0.4137

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.19 50 4.4123 0.0377 0.0239 0.0377 0.0213 0.2075
No log 0.38 100 4.3574 0.0674 0.0177 0.0674 0.0253 0.2741
No log 0.58 150 4.2332 0.0323 0.0017 0.0323 0.0032 0.2884
No log 0.77 200 4.1388 0.0647 0.0160 0.0647 0.0182 0.3380
No log 0.96 250 4.0567 0.0674 0.0350 0.0674 0.0222 0.3407
No log 1.15 300 4.0043 0.0566 0.0114 0.0566 0.0143 0.3221
No log 1.34 350 3.9470 0.0485 0.0049 0.0485 0.0080 0.3221
No log 1.53 400 3.8803 0.0593 0.0124 0.0593 0.0135 0.3353
No log 1.73 450 3.8326 0.0566 0.0057 0.0566 0.0097 0.3323
4.1711 1.92 500 3.7760 0.0566 0.0061 0.0566 0.0103 0.3356
4.1711 2.11 550 3.7454 0.0647 0.0066 0.0647 0.0118 0.3372
4.1711 2.3 600 3.7036 0.0701 0.0075 0.0701 0.0132 0.3429
4.1711 2.49 650 3.6729 0.0728 0.0094 0.0728 0.0161 0.3431
4.1711 2.68 700 3.6306 0.0728 0.0117 0.0728 0.0177 0.3461
4.1711 2.88 750 3.6075 0.0836 0.0155 0.0836 0.0237 0.3536
4.1711 3.07 800 3.5817 0.0943 0.0284 0.0943 0.0285 0.3604
4.1711 3.26 850 3.5607 0.0916 0.0179 0.0916 0.0272 0.3577
4.1711 3.45 900 3.5373 0.0943 0.0214 0.0943 0.0304 0.3588
4.1711 3.64 950 3.5083 0.1078 0.0357 0.1078 0.0464 0.3714
3.7424 3.84 1000 3.4717 0.1105 0.0512 0.1105 0.0520 0.3765
3.7424 4.03 1050 3.4619 0.1213 0.0361 0.1213 0.0489 0.3825
3.7424 4.22 1100 3.4375 0.1240 0.0453 0.1240 0.0554 0.3844
3.7424 4.41 1150 3.4282 0.1267 0.0390 0.1267 0.0547 0.3849
3.7424 4.6 1200 3.4076 0.1267 0.0334 0.1267 0.0493 0.3838
3.7424 4.79 1250 3.3875 0.1078 0.0263 0.1078 0.0388 0.3730
3.7424 4.99 1300 3.3746 0.1240 0.0547 0.1240 0.0496 0.3822
3.7424 5.18 1350 3.3459 0.1375 0.0621 0.1375 0.0618 0.3946
3.7424 5.37 1400 3.3313 0.1375 0.0598 0.1375 0.0650 0.3946
3.7424 5.56 1450 3.3263 0.1429 0.0556 0.1429 0.0623 0.3951
3.5358 5.75 1500 3.3100 0.1348 0.0629 0.1348 0.0640 0.3895
3.5358 5.94 1550 3.2880 0.1402 0.0637 0.1402 0.0641 0.3957
3.5358 6.14 1600 3.2742 0.1402 0.0628 0.1402 0.0640 0.3965
3.5358 6.33 1650 3.2605 0.1509 0.0861 0.1509 0.0786 0.4049
3.5358 6.52 1700 3.2480 0.1429 0.0626 0.1429 0.0663 0.3976
3.5358 6.71 1750 3.2435 0.1482 0.0575 0.1482 0.0665 0.4030
3.5358 6.9 1800 3.2324 0.1482 0.0619 0.1482 0.0670 0.4022
3.5358 7.09 1850 3.2193 0.1563 0.0806 0.1563 0.0799 0.4070
3.5358 7.29 1900 3.2122 0.1644 0.0825 0.1644 0.0865 0.4119
3.5358 7.48 1950 3.1995 0.1617 0.0776 0.1617 0.0836 0.4108
3.4065 7.67 2000 3.1945 0.1617 0.0771 0.1617 0.0837 0.4116
3.4065 7.86 2050 3.1851 0.1725 0.0832 0.1725 0.0919 0.4191
3.4065 8.05 2100 3.1805 0.1617 0.0592 0.1617 0.0776 0.4100
3.4065 8.25 2150 3.1729 0.1617 0.0573 0.1617 0.0762 0.4100
3.4065 8.44 2200 3.1696 0.1617 0.0571 0.1617 0.0750 0.4100
3.4065 8.63 2250 3.1638 0.1644 0.0651 0.1644 0.0781 0.4119
3.4065 8.82 2300 3.1597 0.1590 0.0540 0.1590 0.0735 0.4089
3.4065 9.01 2350 3.1548 0.1671 0.0688 0.1671 0.0860 0.4137
3.4065 9.2 2400 3.1540 0.1617 0.0623 0.1617 0.0798 0.4100
3.4065 9.4 2450 3.1489 0.1644 0.0661 0.1644 0.0820 0.4119
3.3382 9.59 2500 3.1493 0.1644 0.0706 0.1644 0.0820 0.4119
3.3382 9.78 2550 3.1464 0.1671 0.0661 0.1671 0.0831 0.4137
3.3382 9.97 2600 3.1461 0.1671 0.0661 0.1671 0.0830 0.4137

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1
Downloads last month
16
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fydhfzh/hubert-classifier-aug-ref

Finetuned
(68)
this model