File size: 9,224 Bytes
d29e1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug-ref
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug-ref

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7202
- Accuracy: 0.3221
- Precision: 0.2615
- Recall: 0.3221
- F1: 0.2286
- Binary: 0.5226

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.13  | 50   | 4.4111          | 0.0162   | 0.0031    | 0.0162 | 0.0038 | 0.1228 |

| No log        | 0.27  | 100  | 4.3521          | 0.0404   | 0.0228    | 0.0404 | 0.0143 | 0.2263 |

| No log        | 0.4   | 150  | 4.2499          | 0.0391   | 0.0038    | 0.0391 | 0.0062 | 0.2493 |

| No log        | 0.54  | 200  | 4.1248          | 0.0472   | 0.0045    | 0.0472 | 0.0079 | 0.3098 |

| No log        | 0.67  | 250  | 4.0436          | 0.0553   | 0.0057    | 0.0553 | 0.0100 | 0.3318 |

| No log        | 0.81  | 300  | 3.9812          | 0.0458   | 0.0028    | 0.0458 | 0.0052 | 0.3237 |

| No log        | 0.94  | 350  | 3.9080          | 0.0485   | 0.0045    | 0.0485 | 0.0078 | 0.3279 |

| No log        | 1.08  | 400  | 3.8514          | 0.0539   | 0.0063    | 0.0539 | 0.0096 | 0.3344 |

| No log        | 1.21  | 450  | 3.7910          | 0.0526   | 0.0059    | 0.0526 | 0.0093 | 0.3330 |

| 4.1459        | 1.35  | 500  | 3.7445          | 0.0539   | 0.0047    | 0.0539 | 0.0084 | 0.3325 |

| 4.1459        | 1.48  | 550  | 3.6971          | 0.0566   | 0.0188    | 0.0566 | 0.0123 | 0.3357 |

| 4.1459        | 1.62  | 600  | 3.6528          | 0.0580   | 0.0075    | 0.0580 | 0.0109 | 0.3371 |

| 4.1459        | 1.75  | 650  | 3.6122          | 0.0593   | 0.0183    | 0.0593 | 0.0146 | 0.3376 |

| 4.1459        | 1.89  | 700  | 3.5826          | 0.0701   | 0.0255    | 0.0701 | 0.0245 | 0.3466 |

| 4.1459        | 2.02  | 750  | 3.5412          | 0.0687   | 0.0159    | 0.0687 | 0.0214 | 0.3464 |

| 4.1459        | 2.16  | 800  | 3.5003          | 0.0714   | 0.0174    | 0.0714 | 0.0236 | 0.3473 |

| 4.1459        | 2.29  | 850  | 3.4698          | 0.0741   | 0.0244    | 0.0741 | 0.0213 | 0.3496 |

| 4.1459        | 2.43  | 900  | 3.4513          | 0.0916   | 0.0342    | 0.0916 | 0.0337 | 0.3637 |

| 4.1459        | 2.56  | 950  | 3.4149          | 0.0863   | 0.0376    | 0.0863 | 0.0336 | 0.3586 |

| 3.6614        | 2.7   | 1000 | 3.3996          | 0.0970   | 0.0413    | 0.0970 | 0.0380 | 0.3668 |

| 3.6614        | 2.83  | 1050 | 3.3726          | 0.0943   | 0.0352    | 0.0943 | 0.0380 | 0.3644 |

| 3.6614        | 2.97  | 1100 | 3.3546          | 0.1146   | 0.0693    | 0.1146 | 0.0574 | 0.3794 |

| 3.6614        | 3.1   | 1150 | 3.3315          | 0.1132   | 0.0649    | 0.1132 | 0.0520 | 0.3806 |

| 3.6614        | 3.24  | 1200 | 3.3058          | 0.1186   | 0.0550    | 0.1186 | 0.0551 | 0.3822 |

| 3.6614        | 3.37  | 1250 | 3.2844          | 0.1199   | 0.0766    | 0.1199 | 0.0592 | 0.3830 |

| 3.6614        | 3.51  | 1300 | 3.2826          | 0.1294   | 0.0661    | 0.1294 | 0.0599 | 0.3881 |

| 3.6614        | 3.64  | 1350 | 3.2405          | 0.1388   | 0.0630    | 0.1388 | 0.0683 | 0.3970 |

| 3.6614        | 3.78  | 1400 | 3.2241          | 0.1563   | 0.0892    | 0.1563 | 0.0810 | 0.4074 |

| 3.6614        | 3.91  | 1450 | 3.2087          | 0.1509   | 0.0765    | 0.1509 | 0.0798 | 0.4053 |

| 3.4148        | 4.05  | 1500 | 3.1872          | 0.1456   | 0.0883    | 0.1456 | 0.0768 | 0.4024 |

| 3.4148        | 4.18  | 1550 | 3.1728          | 0.1577   | 0.1351    | 0.1577 | 0.0899 | 0.4090 |

| 3.4148        | 4.32  | 1600 | 3.1520          | 0.1833   | 0.1670    | 0.1833 | 0.1134 | 0.4270 |

| 3.4148        | 4.45  | 1650 | 3.1339          | 0.1725   | 0.1053    | 0.1725 | 0.1009 | 0.4198 |

| 3.4148        | 4.59  | 1700 | 3.1232          | 0.1698   | 0.1073    | 0.1698 | 0.0979 | 0.4167 |

| 3.4148        | 4.72  | 1750 | 3.1036          | 0.1954   | 0.1416    | 0.1954 | 0.1235 | 0.4350 |

| 3.4148        | 4.86  | 1800 | 3.0891          | 0.1860   | 0.1132    | 0.1860 | 0.1088 | 0.4294 |

| 3.4148        | 4.99  | 1850 | 3.0693          | 0.1927   | 0.1359    | 0.1927 | 0.1167 | 0.4344 |

| 3.4148        | 5.12  | 1900 | 3.0460          | 0.1995   | 0.1617    | 0.1995 | 0.1241 | 0.4379 |

| 3.4148        | 5.26  | 1950 | 3.0348          | 0.2089   | 0.1571    | 0.2089 | 0.1334 | 0.4437 |

| 3.2503        | 5.39  | 2000 | 3.0256          | 0.2170   | 0.1556    | 0.2170 | 0.1357 | 0.4473 |

| 3.2503        | 5.53  | 2050 | 2.9988          | 0.2305   | 0.1749    | 0.2305 | 0.1516 | 0.4600 |

| 3.2503        | 5.66  | 2100 | 2.9890          | 0.2116   | 0.1360    | 0.2116 | 0.1293 | 0.4473 |

| 3.2503        | 5.8   | 2150 | 2.9687          | 0.2345   | 0.1531    | 0.2345 | 0.1483 | 0.4629 |

| 3.2503        | 5.93  | 2200 | 2.9544          | 0.2372   | 0.1516    | 0.2372 | 0.1514 | 0.4652 |

| 3.2503        | 6.07  | 2250 | 2.9427          | 0.2318   | 0.1414    | 0.2318 | 0.1398 | 0.4605 |

| 3.2503        | 6.2   | 2300 | 2.9256          | 0.2453   | 0.1456    | 0.2453 | 0.1539 | 0.4694 |

| 3.2503        | 6.34  | 2350 | 2.9192          | 0.2385   | 0.1552    | 0.2385 | 0.1446 | 0.4652 |

| 3.2503        | 6.47  | 2400 | 2.9028          | 0.2426   | 0.1563    | 0.2426 | 0.1538 | 0.4690 |

| 3.2503        | 6.61  | 2450 | 2.8901          | 0.2480   | 0.1413    | 0.2480 | 0.1552 | 0.4728 |

| 3.1154        | 6.74  | 2500 | 2.8748          | 0.2803   | 0.2016    | 0.2803 | 0.1920 | 0.4954 |

| 3.1154        | 6.88  | 2550 | 2.8688          | 0.2817   | 0.1970    | 0.2817 | 0.1930 | 0.4968 |

| 3.1154        | 7.01  | 2600 | 2.8416          | 0.2830   | 0.1973    | 0.2830 | 0.1917 | 0.4966 |

| 3.1154        | 7.15  | 2650 | 2.8394          | 0.2857   | 0.1908    | 0.2857 | 0.1949 | 0.4987 |

| 3.1154        | 7.28  | 2700 | 2.8327          | 0.2776   | 0.1965    | 0.2776 | 0.1903 | 0.4931 |

| 3.1154        | 7.42  | 2750 | 2.8230          | 0.2736   | 0.1643    | 0.2736 | 0.1808 | 0.4898 |

| 3.1154        | 7.55  | 2800 | 2.8108          | 0.2790   | 0.1886    | 0.2790 | 0.1876 | 0.4930 |

| 3.1154        | 7.69  | 2850 | 2.7987          | 0.2911   | 0.1928    | 0.2911 | 0.1957 | 0.5023 |

| 3.1154        | 7.82  | 2900 | 2.7890          | 0.2965   | 0.2045    | 0.2965 | 0.1999 | 0.5066 |

| 3.1154        | 7.96  | 2950 | 2.7748          | 0.3086   | 0.2352    | 0.3086 | 0.2153 | 0.5140 |

| 3.0145        | 8.09  | 3000 | 2.7694          | 0.3032   | 0.1992    | 0.3032 | 0.2078 | 0.5109 |

| 3.0145        | 8.23  | 3050 | 2.7646          | 0.2992   | 0.2164    | 0.2992 | 0.2077 | 0.5070 |

| 3.0145        | 8.36  | 3100 | 2.7593          | 0.3100   | 0.2394    | 0.3100 | 0.2190 | 0.5160 |

| 3.0145        | 8.5   | 3150 | 2.7552          | 0.3100   | 0.2288    | 0.3100 | 0.2170 | 0.5155 |

| 3.0145        | 8.63  | 3200 | 2.7478          | 0.3181   | 0.2355    | 0.3181 | 0.2241 | 0.5202 |

| 3.0145        | 8.77  | 3250 | 2.7398          | 0.3100   | 0.2264    | 0.3100 | 0.2180 | 0.5146 |

| 3.0145        | 8.9   | 3300 | 2.7403          | 0.3113   | 0.2375    | 0.3113 | 0.2189 | 0.5170 |

| 3.0145        | 9.04  | 3350 | 2.7354          | 0.3073   | 0.2192    | 0.3073 | 0.2143 | 0.5127 |

| 3.0145        | 9.17  | 3400 | 2.7304          | 0.3100   | 0.2260    | 0.3100 | 0.2186 | 0.5146 |

| 3.0145        | 9.31  | 3450 | 2.7282          | 0.3086   | 0.2219    | 0.3086 | 0.2162 | 0.5136 |

| 2.9542        | 9.44  | 3500 | 2.7235          | 0.3167   | 0.2588    | 0.3167 | 0.2248 | 0.5193 |

| 2.9542        | 9.58  | 3550 | 2.7232          | 0.3181   | 0.2408    | 0.3181 | 0.2241 | 0.5202 |

| 2.9542        | 9.71  | 3600 | 2.7217          | 0.3181   | 0.2425    | 0.3181 | 0.2238 | 0.5208 |

| 2.9542        | 9.84  | 3650 | 2.7205          | 0.3194   | 0.2305    | 0.3194 | 0.2235 | 0.5217 |

| 2.9542        | 9.98  | 3700 | 2.7202          | 0.3221   | 0.2615    | 0.3221 | 0.2286 | 0.5226 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1