End of training
Browse files
README.md
CHANGED
@@ -20,12 +20,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss:
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Binary: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -59,80 +59,58 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
62 |
-
| No log | 0.
|
63 |
-
| No log | 0.
|
64 |
-
| No log | 0.
|
65 |
-
| No log | 0.
|
66 |
-
| No log | 0.
|
67 |
-
| No log |
|
68 |
-
| No log |
|
69 |
-
| No log | 1.
|
70 |
-
| No log | 1.
|
71 |
-
| 4.
|
72 |
-
| 4.
|
73 |
-
| 4.
|
74 |
-
| 4.
|
75 |
-
| 4.
|
76 |
-
| 4.
|
77 |
-
| 4.
|
78 |
-
| 4.
|
79 |
-
| 4.
|
80 |
-
| 4.
|
81 |
-
| 3.
|
82 |
-
| 3.
|
83 |
-
| 3.
|
84 |
-
| 3.
|
85 |
-
| 3.
|
86 |
-
| 3.
|
87 |
-
| 3.
|
88 |
-
| 3.
|
89 |
-
| 3.
|
90 |
-
| 3.
|
91 |
-
| 3.
|
92 |
-
| 3.
|
93 |
-
| 3.
|
94 |
-
| 3.
|
95 |
-
| 3.
|
96 |
-
| 3.
|
97 |
-
| 3.
|
98 |
-
| 3.
|
99 |
-
| 3.
|
100 |
-
| 3.
|
101 |
-
| 3.
|
102 |
-
| 3.
|
103 |
-
| 3.
|
104 |
-
| 3.
|
105 |
-
| 3.
|
106 |
-
| 3.
|
107 |
-
| 3.
|
108 |
-
| 3.
|
109 |
-
| 3.
|
110 |
-
| 3.
|
111 |
-
| 3.
|
112 |
-
| 3.
|
113 |
-
| 3.
|
114 |
-
| 3.1154 | 7.15 | 2650 | 2.8394 | 0.2857 | 0.1908 | 0.2857 | 0.1949 | 0.4987 |
|
115 |
-
| 3.1154 | 7.28 | 2700 | 2.8327 | 0.2776 | 0.1965 | 0.2776 | 0.1903 | 0.4931 |
|
116 |
-
| 3.1154 | 7.42 | 2750 | 2.8230 | 0.2736 | 0.1643 | 0.2736 | 0.1808 | 0.4898 |
|
117 |
-
| 3.1154 | 7.55 | 2800 | 2.8108 | 0.2790 | 0.1886 | 0.2790 | 0.1876 | 0.4930 |
|
118 |
-
| 3.1154 | 7.69 | 2850 | 2.7987 | 0.2911 | 0.1928 | 0.2911 | 0.1957 | 0.5023 |
|
119 |
-
| 3.1154 | 7.82 | 2900 | 2.7890 | 0.2965 | 0.2045 | 0.2965 | 0.1999 | 0.5066 |
|
120 |
-
| 3.1154 | 7.96 | 2950 | 2.7748 | 0.3086 | 0.2352 | 0.3086 | 0.2153 | 0.5140 |
|
121 |
-
| 3.0145 | 8.09 | 3000 | 2.7694 | 0.3032 | 0.1992 | 0.3032 | 0.2078 | 0.5109 |
|
122 |
-
| 3.0145 | 8.23 | 3050 | 2.7646 | 0.2992 | 0.2164 | 0.2992 | 0.2077 | 0.5070 |
|
123 |
-
| 3.0145 | 8.36 | 3100 | 2.7593 | 0.3100 | 0.2394 | 0.3100 | 0.2190 | 0.5160 |
|
124 |
-
| 3.0145 | 8.5 | 3150 | 2.7552 | 0.3100 | 0.2288 | 0.3100 | 0.2170 | 0.5155 |
|
125 |
-
| 3.0145 | 8.63 | 3200 | 2.7478 | 0.3181 | 0.2355 | 0.3181 | 0.2241 | 0.5202 |
|
126 |
-
| 3.0145 | 8.77 | 3250 | 2.7398 | 0.3100 | 0.2264 | 0.3100 | 0.2180 | 0.5146 |
|
127 |
-
| 3.0145 | 8.9 | 3300 | 2.7403 | 0.3113 | 0.2375 | 0.3113 | 0.2189 | 0.5170 |
|
128 |
-
| 3.0145 | 9.04 | 3350 | 2.7354 | 0.3073 | 0.2192 | 0.3073 | 0.2143 | 0.5127 |
|
129 |
-
| 3.0145 | 9.17 | 3400 | 2.7304 | 0.3100 | 0.2260 | 0.3100 | 0.2186 | 0.5146 |
|
130 |
-
| 3.0145 | 9.31 | 3450 | 2.7282 | 0.3086 | 0.2219 | 0.3086 | 0.2162 | 0.5136 |
|
131 |
-
| 2.9542 | 9.44 | 3500 | 2.7235 | 0.3167 | 0.2588 | 0.3167 | 0.2248 | 0.5193 |
|
132 |
-
| 2.9542 | 9.58 | 3550 | 2.7232 | 0.3181 | 0.2408 | 0.3181 | 0.2241 | 0.5202 |
|
133 |
-
| 2.9542 | 9.71 | 3600 | 2.7217 | 0.3181 | 0.2425 | 0.3181 | 0.2238 | 0.5208 |
|
134 |
-
| 2.9542 | 9.84 | 3650 | 2.7205 | 0.3194 | 0.2305 | 0.3194 | 0.2235 | 0.5217 |
|
135 |
-
| 2.9542 | 9.98 | 3700 | 2.7202 | 0.3221 | 0.2615 | 0.3221 | 0.2286 | 0.5226 |
|
136 |
|
137 |
|
138 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 3.1461
|
24 |
+
- Accuracy: 0.1671
|
25 |
+
- Precision: 0.0661
|
26 |
+
- Recall: 0.1671
|
27 |
+
- F1: 0.0830
|
28 |
+
- Binary: 0.4137
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
62 |
+
| No log | 0.19 | 50 | 4.4123 | 0.0377 | 0.0239 | 0.0377 | 0.0213 | 0.2075 |
|
63 |
+
| No log | 0.38 | 100 | 4.3574 | 0.0674 | 0.0177 | 0.0674 | 0.0253 | 0.2741 |
|
64 |
+
| No log | 0.58 | 150 | 4.2332 | 0.0323 | 0.0017 | 0.0323 | 0.0032 | 0.2884 |
|
65 |
+
| No log | 0.77 | 200 | 4.1388 | 0.0647 | 0.0160 | 0.0647 | 0.0182 | 0.3380 |
|
66 |
+
| No log | 0.96 | 250 | 4.0567 | 0.0674 | 0.0350 | 0.0674 | 0.0222 | 0.3407 |
|
67 |
+
| No log | 1.15 | 300 | 4.0043 | 0.0566 | 0.0114 | 0.0566 | 0.0143 | 0.3221 |
|
68 |
+
| No log | 1.34 | 350 | 3.9470 | 0.0485 | 0.0049 | 0.0485 | 0.0080 | 0.3221 |
|
69 |
+
| No log | 1.53 | 400 | 3.8803 | 0.0593 | 0.0124 | 0.0593 | 0.0135 | 0.3353 |
|
70 |
+
| No log | 1.73 | 450 | 3.8326 | 0.0566 | 0.0057 | 0.0566 | 0.0097 | 0.3323 |
|
71 |
+
| 4.1711 | 1.92 | 500 | 3.7760 | 0.0566 | 0.0061 | 0.0566 | 0.0103 | 0.3356 |
|
72 |
+
| 4.1711 | 2.11 | 550 | 3.7454 | 0.0647 | 0.0066 | 0.0647 | 0.0118 | 0.3372 |
|
73 |
+
| 4.1711 | 2.3 | 600 | 3.7036 | 0.0701 | 0.0075 | 0.0701 | 0.0132 | 0.3429 |
|
74 |
+
| 4.1711 | 2.49 | 650 | 3.6729 | 0.0728 | 0.0094 | 0.0728 | 0.0161 | 0.3431 |
|
75 |
+
| 4.1711 | 2.68 | 700 | 3.6306 | 0.0728 | 0.0117 | 0.0728 | 0.0177 | 0.3461 |
|
76 |
+
| 4.1711 | 2.88 | 750 | 3.6075 | 0.0836 | 0.0155 | 0.0836 | 0.0237 | 0.3536 |
|
77 |
+
| 4.1711 | 3.07 | 800 | 3.5817 | 0.0943 | 0.0284 | 0.0943 | 0.0285 | 0.3604 |
|
78 |
+
| 4.1711 | 3.26 | 850 | 3.5607 | 0.0916 | 0.0179 | 0.0916 | 0.0272 | 0.3577 |
|
79 |
+
| 4.1711 | 3.45 | 900 | 3.5373 | 0.0943 | 0.0214 | 0.0943 | 0.0304 | 0.3588 |
|
80 |
+
| 4.1711 | 3.64 | 950 | 3.5083 | 0.1078 | 0.0357 | 0.1078 | 0.0464 | 0.3714 |
|
81 |
+
| 3.7424 | 3.84 | 1000 | 3.4717 | 0.1105 | 0.0512 | 0.1105 | 0.0520 | 0.3765 |
|
82 |
+
| 3.7424 | 4.03 | 1050 | 3.4619 | 0.1213 | 0.0361 | 0.1213 | 0.0489 | 0.3825 |
|
83 |
+
| 3.7424 | 4.22 | 1100 | 3.4375 | 0.1240 | 0.0453 | 0.1240 | 0.0554 | 0.3844 |
|
84 |
+
| 3.7424 | 4.41 | 1150 | 3.4282 | 0.1267 | 0.0390 | 0.1267 | 0.0547 | 0.3849 |
|
85 |
+
| 3.7424 | 4.6 | 1200 | 3.4076 | 0.1267 | 0.0334 | 0.1267 | 0.0493 | 0.3838 |
|
86 |
+
| 3.7424 | 4.79 | 1250 | 3.3875 | 0.1078 | 0.0263 | 0.1078 | 0.0388 | 0.3730 |
|
87 |
+
| 3.7424 | 4.99 | 1300 | 3.3746 | 0.1240 | 0.0547 | 0.1240 | 0.0496 | 0.3822 |
|
88 |
+
| 3.7424 | 5.18 | 1350 | 3.3459 | 0.1375 | 0.0621 | 0.1375 | 0.0618 | 0.3946 |
|
89 |
+
| 3.7424 | 5.37 | 1400 | 3.3313 | 0.1375 | 0.0598 | 0.1375 | 0.0650 | 0.3946 |
|
90 |
+
| 3.7424 | 5.56 | 1450 | 3.3263 | 0.1429 | 0.0556 | 0.1429 | 0.0623 | 0.3951 |
|
91 |
+
| 3.5358 | 5.75 | 1500 | 3.3100 | 0.1348 | 0.0629 | 0.1348 | 0.0640 | 0.3895 |
|
92 |
+
| 3.5358 | 5.94 | 1550 | 3.2880 | 0.1402 | 0.0637 | 0.1402 | 0.0641 | 0.3957 |
|
93 |
+
| 3.5358 | 6.14 | 1600 | 3.2742 | 0.1402 | 0.0628 | 0.1402 | 0.0640 | 0.3965 |
|
94 |
+
| 3.5358 | 6.33 | 1650 | 3.2605 | 0.1509 | 0.0861 | 0.1509 | 0.0786 | 0.4049 |
|
95 |
+
| 3.5358 | 6.52 | 1700 | 3.2480 | 0.1429 | 0.0626 | 0.1429 | 0.0663 | 0.3976 |
|
96 |
+
| 3.5358 | 6.71 | 1750 | 3.2435 | 0.1482 | 0.0575 | 0.1482 | 0.0665 | 0.4030 |
|
97 |
+
| 3.5358 | 6.9 | 1800 | 3.2324 | 0.1482 | 0.0619 | 0.1482 | 0.0670 | 0.4022 |
|
98 |
+
| 3.5358 | 7.09 | 1850 | 3.2193 | 0.1563 | 0.0806 | 0.1563 | 0.0799 | 0.4070 |
|
99 |
+
| 3.5358 | 7.29 | 1900 | 3.2122 | 0.1644 | 0.0825 | 0.1644 | 0.0865 | 0.4119 |
|
100 |
+
| 3.5358 | 7.48 | 1950 | 3.1995 | 0.1617 | 0.0776 | 0.1617 | 0.0836 | 0.4108 |
|
101 |
+
| 3.4065 | 7.67 | 2000 | 3.1945 | 0.1617 | 0.0771 | 0.1617 | 0.0837 | 0.4116 |
|
102 |
+
| 3.4065 | 7.86 | 2050 | 3.1851 | 0.1725 | 0.0832 | 0.1725 | 0.0919 | 0.4191 |
|
103 |
+
| 3.4065 | 8.05 | 2100 | 3.1805 | 0.1617 | 0.0592 | 0.1617 | 0.0776 | 0.4100 |
|
104 |
+
| 3.4065 | 8.25 | 2150 | 3.1729 | 0.1617 | 0.0573 | 0.1617 | 0.0762 | 0.4100 |
|
105 |
+
| 3.4065 | 8.44 | 2200 | 3.1696 | 0.1617 | 0.0571 | 0.1617 | 0.0750 | 0.4100 |
|
106 |
+
| 3.4065 | 8.63 | 2250 | 3.1638 | 0.1644 | 0.0651 | 0.1644 | 0.0781 | 0.4119 |
|
107 |
+
| 3.4065 | 8.82 | 2300 | 3.1597 | 0.1590 | 0.0540 | 0.1590 | 0.0735 | 0.4089 |
|
108 |
+
| 3.4065 | 9.01 | 2350 | 3.1548 | 0.1671 | 0.0688 | 0.1671 | 0.0860 | 0.4137 |
|
109 |
+
| 3.4065 | 9.2 | 2400 | 3.1540 | 0.1617 | 0.0623 | 0.1617 | 0.0798 | 0.4100 |
|
110 |
+
| 3.4065 | 9.4 | 2450 | 3.1489 | 0.1644 | 0.0661 | 0.1644 | 0.0820 | 0.4119 |
|
111 |
+
| 3.3382 | 9.59 | 2500 | 3.1493 | 0.1644 | 0.0706 | 0.1644 | 0.0820 | 0.4119 |
|
112 |
+
| 3.3382 | 9.78 | 2550 | 3.1464 | 0.1671 | 0.0661 | 0.1671 | 0.0831 | 0.4137 |
|
113 |
+
| 3.3382 | 9.97 | 2600 | 3.1461 | 0.1671 | 0.0661 | 0.1671 | 0.0830 | 0.4137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
|
116 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 378386248
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a387c779b2cf7670ee259d020510844a5bb7726e81f89613c0fd11dacd6370bc
|
3 |
size 378386248
|
runs/Jul13_12-44-56_LAPTOP-1GID9RGH/events.out.tfevents.1720849497.LAPTOP-1GID9RGH.23340.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cebb2ac46e2ded645da0d70522069373fe39c738fb1c453fae116dfa547cf76a
|
3 |
+
size 37582
|