g-assismoraes's picture
End of training
0eab930 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
  - generated_from_trainer
model-index:
  - name: mdeberta-semeval25_narratives09_fold2
    results: []

mdeberta-semeval25_narratives09_fold2

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.2915
  • Precision Samples: 0.3850
  • Recall Samples: 0.7226
  • F1 Samples: 0.4627
  • Precision Macro: 0.7130
  • Recall Macro: 0.4503
  • F1 Macro: 0.2846
  • Precision Micro: 0.3282
  • Recall Micro: 0.6957
  • F1 Micro: 0.4460
  • Precision Weighted: 0.4983
  • Recall Weighted: 0.6957
  • F1 Weighted: 0.3925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Samples Recall Samples F1 Samples Precision Macro Recall Macro F1 Macro Precision Micro Recall Micro F1 Micro Precision Weighted Recall Weighted F1 Weighted
5.4789 1.0 19 5.4030 1.0 0.0 0.0 1.0 0.0476 0.0476 1.0 0.0 0.0 1.0 0.0 0.0
5.2627 2.0 38 5.1901 0.2839 0.3351 0.2805 0.9014 0.1655 0.1112 0.2952 0.2899 0.2925 0.7607 0.2899 0.1520
4.6993 3.0 57 5.0001 0.3075 0.4274 0.3272 0.8700 0.2042 0.1344 0.3164 0.3841 0.3470 0.6843 0.3841 0.2124
4.5547 4.0 76 4.7741 0.3603 0.5142 0.3949 0.8024 0.2616 0.1705 0.3290 0.4601 0.3837 0.5941 0.4601 0.2529
4.2228 5.0 95 4.5899 0.3432 0.6239 0.4110 0.7733 0.3356 0.2028 0.3165 0.5688 0.4067 0.5551 0.5688 0.3071
4.0369 6.0 114 4.4640 0.3575 0.6764 0.4282 0.7161 0.3926 0.2391 0.3084 0.6413 0.4165 0.4951 0.6413 0.3492
4.0052 7.0 133 4.3708 0.3529 0.6907 0.4313 0.7169 0.4237 0.2521 0.3088 0.6703 0.4229 0.4941 0.6703 0.3594
3.8847 8.0 152 4.3291 0.3645 0.7105 0.4445 0.7205 0.4312 0.2569 0.3170 0.6812 0.4327 0.5006 0.6812 0.3678
3.8223 9.0 171 4.3064 0.3676 0.7080 0.4457 0.7196 0.4326 0.2643 0.3160 0.6812 0.4317 0.4985 0.6812 0.3716
4.3457 10.0 190 4.2915 0.3850 0.7226 0.4627 0.7130 0.4503 0.2846 0.3282 0.6957 0.4460 0.4983 0.6957 0.3925

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1
  • Datasets 2.21.0
  • Tokenizers 0.20.1