bert-finetuned-ner / README.md
gaby96's picture
Training in progress, epoch 0
6b9d5fb verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.8868259606070391
          - name: Recall
            type: recall
            value: 0.924436216762033
          - name: F1
            type: f1
            value: 0.9052406064601187
          - name: Accuracy
            type: accuracy
            value: 0.9787926061105552

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0832
  • Precision: 0.8868
  • Recall: 0.9244
  • F1: 0.9052
  • Accuracy: 0.9788

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 0.5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.106 0.5001 1756 0.0832 0.8868 0.9244 0.9052 0.9788

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.2.2
  • Datasets 2.21.0
  • Tokenizers 0.19.1