metadata
tags:
- text-regression
- anger
- emotion
- emotion intensity
language:
- unk
widget:
- text: I am furious
datasets:
- SemEval-2018-Task-1-Text-Regression-Task
co2_eq_emissions:
emissions: 0.030118000944741423
twitter-roberta-base-anger-intensity
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2022-154m on the SemEval 2018 - Task 1 Affect in Tweets (subtask: El-reg / text regression).
Warning: Hosted inference API produces inaccurate values
Model Trained Using AutoTrain
- Problem type: Single Column Regression
- Model ID: 72775139028
- CO2 Emissions (in grams): 0.0301
Validation Metrics
- Loss: 0.011
- MSE: 0.011
- MAE: 0.085
- R2: 0.641
- RMSE: 0.103
- Explained Variance: 0.641
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I am furious"}' https://api-inference.huggingface.co/models/garrettbaber/twitter-roberta-base-anger-intensity
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("garrettbaber/twitter-roberta-base-anger-intensity")
tokenizer = AutoTokenizer.from_pretrained("garrettbaber/twitter-roberta-base-anger-intensity")
inputs = tokenizer("I am furious", return_tensors="pt")
outputs = model(**inputs)