Edit model card

chemfie-gpt-experiment-1

This model is part of my own hands-on learning and experimentation on molecule generation, to determine which type of model is best suited for SELFIES (GPT2, T5, or by way of fill-mask). It also serves as a baseline for future ablation and customization studies in model architecture, dataset augmentation(s), and training processes.

Model Details

  • Model Type: GPT-2
  • Architecture: L8, A6, H384
  • Task: Generation of SELFIES strings
  • Language: N/A (Chemical representation)

Personal Intended Use

  • Hands-on learning, research and experimentation in molecular generation
  • Baseline for ablation studies and comparisons with more advanced models

Usage

Direct Use

Since this model doesn't use a proper GPT2 format tokenizer, special tokens still need to be set up manually (next experiment will use a proper one ofc):

from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM
import torch

tokenizer = PreTrainedTokenizerFast(
    tokenizer_file="gpt2_tokenizer.json",
    model_max_length=512,
    unk_token="<unk>",
    pad_token="<pad>",
    eos_token="</s>",
    bos_token="<s>",
    mask_token="<mask>",
)

model = AutoModelForCausalLM.from_pretrained("gbyuvd/chemfie-gpt-experiment-1")

# Generate some sample outputs
def generate_molecules(model, tokenizer, num_samples=5, max_length=100):
    model.eval()
    generated = []
    for _ in range(num_samples):
        input_ids = torch.tensor([[tokenizer.bos_token_id]]).to(model.device)
        output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True)
        generated.append(tokenizer.decode(output[0], skip_special_tokens=True))
    return generated

sample_molecules = generate_molecules(model, tokenizer)
print("Sample generated molecules:")
for i, mol in enumerate(sample_molecules, 1):
    print(f"{i}. {mol}")

""""
....
2. [C] [Branch1] [C] [Branch1] [C] [C] [=N] [C] [Branch1] [C] [=N] [Branch1] [C] [N] [Branch1] [C] [C]
3. [C] [Branch1] [C] [Branch1] [C] [C] [=N] [C] [Branch1] [C] [=N] [Branch1] [C] [N] [=C] [Ring1] [N]
4. [C] [Branch1] [C] [Branch1] [C] [C] [=N] [C] [Branch1] [C] [=N]
5. [C] [Branch1] [C] [Branch1] [C] [C] [=N] [C] [Branch1] [C] [=N] [Branch1] [C] [N] [Branch1] [C]

""""


Tokenized SELFIES to SMILES:

import selfies as sf

test = "[C] [Branch1] [O] [=C] [C] [C] [C] [C] [C] [C] [C] [=Branch1] [=O] [O] [=C] [C] [C] [C] [Ring1]"
test = test.replace(' ', '')
print(sf.decoder(test))

""""
C(CCCCCCCCO)=CCC=C

""""

Generate with Different Temperature(s) and Visualization

import torch
import selfies as sf
from rdkit import Chem
from rdkit.Chem import Draw
import matplotlib.pyplot as plt


def generate_molecules(temperature, num_molecules=2):
    inputs = torch.tensor([[tokenizer.bos_token_id]])
    gen = model.generate(
        inputs,
        do_sample=True,
        max_length=256,
        temperature=temperature,
        early_stopping=True,
        pad_token_id=tokenizer.pad_token_id,
        num_beams=5,
        num_return_sequences=num_molecules
    )
    return tokenizer.batch_decode(gen, skip_special_tokens=True)

def selfies_to_smiles(selfies_str):
    selfies_str = selfies_str.replace(' ', '')
    try:
        return sf.decoder(selfies_str)
    except:
        return None

def visualize_molecules(temperatures):
    fig, axs = plt.subplots(len(temperatures), 2, figsize=(20, 4*len(temperatures))) # don't forget to change this args, if you want to generate more than 2 samples each
    fig.suptitle("Generated Molecules at Different Temperatures", fontsize=16)

    for i, temp in enumerate(temperatures):
        molecules = generate_molecules(temp)
        for j, mol in enumerate(molecules):
            smiles = selfies_to_smiles(mol)
            if smiles:
                rdkit_mol = Chem.MolFromSmiles(smiles)
                if rdkit_mol:
                    img = Draw.MolToImage(rdkit_mol)
                    axs[i, j].imshow(img)
                    axs[i, j].axis('off')
                    axs[i, j].set_title(f"Temp: {temp}", fontsize=10)
                else:
                    axs[i, j].text(0.5, 0.5, "Invalid\nMolecule", ha='center', va='center')
                    axs[i, j].axis('off')
            else:
                axs[i, j].text(0.5, 0.5, "Invalid\nSELFIES", ha='center', va='center')
                axs[i, j].axis('off')

    plt.tight_layout()
    plt.show()

# Generate and visualize molecules at different temperatures
temperatures = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5]
visualize_molecules(temperatures)

Output example:

image/png

Generate using Starting Sequence with Different Temperature(s) and Visualization

import torch
import selfies as sf
from rdkit import Chem
from rdkit.Chem import Draw
import matplotlib.pyplot as plt


def generate_molecules(seed, temperature, num_molecules=5):
    # Tokenize the seed
    seed_tokens = tokenizer.encode(seed, add_special_tokens=False, return_tensors="pt")
    
    # Generate from the seed
    gen = model.generate(
        seed_tokens,
        do_sample=True,
        max_length=256,
        temperature=temperature,
        early_stopping=True,
        pad_token_id=tokenizer.pad_token_id,
        num_beams=5,
        num_return_sequences=num_molecules
    )
    
    # Decode the generated sequences
    generated = tokenizer.batch_decode(gen, skip_special_tokens=True)
    
    # Combine seed with generated sequences
    return [seed + seq[len(seed):] for seq in generated]

def selfies_to_smiles(selfies_str):
    selfies_str = selfies_str.replace(' ', '')
    try:
        return sf.decoder(selfies_str)
    except:
        return None

def visualize_molecules(seed, temperatures):
    fig, axs = plt.subplots(len(temperatures), 5, figsize=(20, 4*len(temperatures)))
    fig.suptitle(f"Generated Molecules at Different Temperatures\nSeed: {seed}", fontsize=16)

    for i, temp in enumerate(temperatures):
        molecules = generate_molecules(seed, temp)
        for j, mol in enumerate(molecules):
            smiles = selfies_to_smiles(mol)
            if smiles:
                rdkit_mol = Chem.MolFromSmiles(smiles)
                if rdkit_mol:
                    img = Draw.MolToImage(rdkit_mol)
                    axs[i, j].imshow(img)
                    axs[i, j].axis('off')
                    axs[i, j].set_title(f"Temp: {temp}", fontsize=10)
                else:
                    axs[i, j].text(0.5, 0.5, "Invalid\nMolecule", ha='center', va='center')
                    axs[i, j].axis('off')
            else:
                axs[i, j].text(0.5, 0.5, "Invalid\nSELFIES", ha='center', va='center')
                axs[i, j].axis('off')

    plt.tight_layout()
    plt.show()

# Set the seed and temperatures
seed = "[C] [C] [=Branch1] [C] [=O] [O] [C] [C] [N+1]"
temperatures = [0.5, 1.0, 1.5, 2.0, 2.5]

# Generate and visualize molecules at different temperatures
visualize_molecules(seed, temperatures)

Example output:

image/png

Training Data

  • Source: Curated and merged from COCONUTDB (Sorokina et al., 2021), ChemBL34 (Zdrazil et al., 2023), and SuperNatural3 (Gallo et al. 2023) database
  • Total: 2,933,355 samples
  • Total Train: 2,346,680 samples
  • Validation: 293,336 samples
  • Per chunk: 586,670 train, 73,334 validation, 73,334 test
  • Random seed for split: 42

Training Procedure

  • Batch Size: 64
  • Num Epoch for Each Chunk: 1
  • Learning Rate: 1.5e-5
  • Optimizer: Ranger21 (MADGRAD-Lookahead-AdaBelief with gradient centralization, linear warm up (22%), gradient clipping, and L2 weight decay)

Training Logs

Chunk Chunk's Training Loss Chunk's Validation Loss Status
I 1.346400 1.065180 Done
II 1.123500 0.993118 Done
III 1.058300 0.948303 Done
IV 1.016600 0.921706 Done

Evaluation Results

[To be filled after model evaluation]

Limitations and Biases

  • May generate unrealistic or synthetically inaccessible molecules
  • Performance on complex, branched, and ringed molecules to be evaluated

Disclaimer & Ethical Considerations

  • This model is in early development stage and may not consistently generate valid outputs.
  • It is intended for personal exploration, academic, and research purposes only.
  • You should be aware of potential ethical concerns:
    • Possible generation of harmful substances if misused
    • Potential biases inherent in the training data
  • The accuracy, completeness, and reliability of the model's outputs are not guaranteed.
  • This model should not be used for any commercial or legal purposes.
  • The information and model provided are for educational and research use only.

Additional Information

  • Part of experimental chemfie-gpt/T5 project
  • Serves as a baseline for future experiments with further curated datasets, training improvements, and architectural modifications

Citation

BibTeX

COCONUTDB

@article{sorokina2021coconut,
  title={COCONUT online: Collection of Open Natural Products database},
  author={Sorokina, Maria and Merseburger, Peter and Rajan, Kohulan and Yirik, Mehmet Aziz and Steinbeck, Christoph},
  journal={Journal of Cheminformatics},
  volume={13},
  number={1},
  pages={2},
  year={2021},
  doi={10.1186/s13321-020-00478-9}
}

ChemBL34

@article{zdrazil2023chembl,
  title={The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods},
  author={Zdrazil, Barbara and Felix, Eloy and Hunter, Fiona and Manners, Emma J and Blackshaw, James and Corbett, Sybilla and de Veij, Marleen and Ioannidis, Harris and Lopez, David Mendez and Mosquera, Juan F and Magarinos, Maria Paula and Bosc, Nicolas and Arcila, Ricardo and Kizil{\"o}ren, Tevfik and Gaulton, Anna and Bento, A Patr{\'i}cia and Adasme, Melissa F and Monecke, Peter and Landrum, Gregory A and Leach, Andrew R},
  journal={Nucleic Acids Research},
  year={2023},
  volume={gkad1004},
  doi={10.1093/nar/gkad1004}
}

@misc{chembl34,
  title={ChemBL34},
  year={2023},
  doi={10.6019/CHEMBL.database.34}
}

SuperNatural3

@article{Gallo2023,
  author = {Gallo, K and Kemmler, E and Goede, A and Becker, F and Dunkel, M and Preissner, R and Banerjee, P},
  title = {{SuperNatural 3.0-a database of natural products and natural product-based derivatives}},
  journal = {Nucleic Acids Research},
  year = {2023},
  month = jan,
  day = {6},
  volume = {51},
  number = {D1},
  pages = {D654-D659},
  doi = {10.1093/nar/gkac1008}
}
Downloads last month
28
Safetensors
Model size
14.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including gbyuvd/chemfie-gpt-experiment-1