Edit model card

Wav2Vec2-Large-XLSR-53-Italian

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Italian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "it", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-it')
model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') 

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Portuguese test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

import unicodedata
import jiwer

def chunked_wer(targets, predictions, chunk_size=None):
    if chunk_size is None: return jiwer.wer(targets, predictions)
    start = 0
    end = chunk_size
    H, S, D, I = 0, 0, 0, 0
    while start < len(targets):
        chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
        H = H + chunk_metrics["hits"]
        S = S + chunk_metrics["substitutions"]
        D = D + chunk_metrics["deletions"]
        I = I + chunk_metrics["insertions"]
        start += chunk_size
        end += chunk_size
    return float(S + D + I) / float(H + S + D)

allowed_characters = [
    " ",
    "'",
    'a',
    'b',
    'c',
    'd',
    'e',
    'f',
    'g',
    'h',
    'i',
    'j',
    'k',
    'l',
    'm',
    'n',
    'o',
    'p',
    'q',
    'r',
    's',
    't',
    'u',
    'v',
    'w',
    'x',
    'y',
    'z',
    'à',
    'á',
    'è',
    'é',
    'ì',
    'í',
    'ò',
    'ó',
    'ù',
    'ú',
    ]

def remove_accents(input_str):
    if input_str in allowed_characters:
        return input_str
    if input_str == 'ø':
        return 'o'
    elif input_str=='ß' or input_str =='ß':
        return 'b'
    elif input_str=='ё':
        return 'e'
    elif input_str=='đ':
        return 'd'
    nfkd_form = unicodedata.normalize('NFKD', input_str)
    only_ascii = nfkd_form.encode('ASCII', 'ignore').decode()
    
    if only_ascii is None or only_ascii=='':
        return input_str
    else:
        return only_ascii
def fix_accents(sentence):
    new_sentence=''
    for char in sentence:
        new_sentence+=remove_accents(char)
    return new_sentence

test_dataset = load_dataset("common_voice", "it", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-it')
model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') 
model.to("cuda")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

chars_to_remove= [",", "?", ".", "!", "-", ";", ":", '""', "%", '"', "�",'ʿ','“','”','(','=','`','_','+','«','<','>','~','…','«','»','–','\[','\]','°','̇','´','ʾ','„','̇','̇','̇','¡'] # All extra characters

chars_to_remove_regex = f'[{"".join(chars_to_remove)}]'

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower().replace('‘',"'").replace('ʻ',"'").replace('ʼ',"'").replace('’',"'").replace('ʹ',"''").replace('̇','')
    batch["sentence"] = fix_accents(batch["sentence"])
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

        pred_ids = torch.argmax(logits, dim=-1)
        batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=5000)))

Test Result: 11.49 %

Training

The Common Voice train and validation datasets were used for training. The code can be found here.

Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train gchhablani/wav2vec2-large-xlsr-it

Evaluation results