whisper_tiny_ptbr / README.md
ghiidamas1992-nlp's picture
End of training
da3bea9 verified
metadata
library_name: transformers
language:
  - pt
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - RodrigoLimaRFL/nurc-sp_pseudo_labelled
metrics:
  - wer
model-index:
  - name: Whisper-Tiny-PTBR
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: nurc-sp_pseudo_labelled
          type: RodrigoLimaRFL/nurc-sp_pseudo_labelled
        metrics:
          - name: Wer
            type: wer
            value: 59.38036802234333

Whisper-Tiny-PTBR

This model is a fine-tuned version of openai/whisper-tiny on the nurc-sp_pseudo_labelled dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0137
  • Wer: 59.3804

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.2522 0.5094 1000 1.1713 74.6895
1.0397 1.0188 2000 1.0796 68.5537
0.9879 1.5283 3000 1.0420 62.4686
0.9334 2.0377 4000 1.0195 59.7845
0.9834 2.5471 5000 1.0137 59.3804

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1