SentenceTransformer based on distilbert/distilbert-base-uncased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'T L F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2020 CX482 G-S',
'T R F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2025 V363N G-S',
'T R F DUMMY HEAD CG VERT WIDEBAND VIA Linear Impact Test 2021 C727 G-S',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.2705 |
spearman_cosine | 0.2799 |
pearson_manhattan | 0.2287 |
spearman_manhattan | 0.2535 |
pearson_euclidean | 0.2302 |
spearman_euclidean | 0.255 |
pearson_dot | 0.2125 |
spearman_dot | 0.1903 |
pearson_max | 0.2705 |
spearman_max | 0.2799 |
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.2632 |
spearman_cosine | 0.2722 |
pearson_manhattan | 0.2177 |
spearman_manhattan | 0.244 |
pearson_euclidean | 0.2195 |
spearman_euclidean | 0.2463 |
pearson_dot | 0.2107 |
spearman_dot | 0.1865 |
pearson_max | 0.2632 |
spearman_max | 0.2722 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 481,114 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 16 tokens
- mean: 32.14 tokens
- max: 57 tokens
- min: 17 tokens
- mean: 32.62 tokens
- max: 58 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score T L C PLR SM SCS L2 HY REF 053 LAT WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2018 P558 G-S
T PCM PWR POWER TO PCM VOLT 2 SEC WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2020 V363N VOLTS
0.5198143220305642
T L F DUMMY L_FEMUR MX LOAD WIDEBAND 90 Deg Frontal Impact Simulation MY2025 U717 IN-LBS
B L FRAME AT No 1 X MEM LAT WIDEBAND Inline 25% Left Front Offset Vehicle to Vehicle 2021 P702 G-S
0.5214072221695696
T R F DOOR REAR OF SEAT H PT LAT WIDEBAND 75 Deg Oblique Right Side 10 in. Pole 2015 P552 G-S
T SCS R2 HY BOS A12 008 TAP RIGHT C PILLAR VOLT WIDEBAND 30 Deg Front Angular Right 2021 CX727 VOLTS
0.322173496575591
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 103,097 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 17 tokens
- mean: 31.98 tokens
- max: 56 tokens
- min: 15 tokens
- mean: 31.96 tokens
- max: 58 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score T R F DUMMY NECK UPPER MZ LOAD WIDEBAND 90 Deg Frontal Impact Simulation 2026 GENERIC IN-LBS
T R ROCKER AT C PILLAR LAT WIDEBAND 90 Deg Front 2021 P702 G-S
0.5234504780172093
T L ROCKER AT B_PILLAR VERT WIDEBAND 90 Deg Front 2024.5 P702 G-S
T RCM BTWN SEATS LOW G Z RCM C1 LZ ALV RC7 003 VOLT WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2018 P558 VOLTS
0.36805699821563936
T R FRAME AT C_PILLAR LONG WIDEBAND 90 Deg Left Side IIHS MDB to Vehicle 2024.5 P702 G-S
T L F LAP BELT AT ANCHOR LOAD WIDEBAND 90 DEG / LEFT SIDE DECEL-3G 2021 P702 LBF
0.5309750606095435
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 32warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 32max_steps
: -1lr_scheduler_type
: linearwarmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 7ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0past_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Trueskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Falseinclude_tokens_per_second
: Falseneftune_noise_alpha
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
---|---|---|---|---|
1.0650 | 1000 | 7.6111 | 7.5503 | 0.4087 |
2.1299 | 2000 | 7.5359 | 7.5420 | 0.4448 |
3.1949 | 3000 | 7.5232 | 7.5292 | 0.4622 |
4.2599 | 4000 | 7.5146 | 7.5218 | 0.4779 |
5.3248 | 5000 | 7.5045 | 7.5200 | 0.4880 |
6.3898 | 6000 | 7.4956 | 7.5191 | 0.4934 |
7.4547 | 7000 | 7.4873 | 7.5170 | 0.4967 |
8.5197 | 8000 | 7.4781 | 7.5218 | 0.4931 |
9.5847 | 9000 | 7.4686 | 7.5257 | 0.4961 |
10.6496 | 10000 | 7.4596 | 7.5327 | 0.4884 |
11.7146 | 11000 | 7.4498 | 7.5403 | 0.4860 |
12.7796 | 12000 | 7.4386 | 7.5507 | 0.4735 |
13.8445 | 13000 | 7.4253 | 7.5651 | 0.4660 |
14.9095 | 14000 | 7.4124 | 7.5927 | 0.4467 |
15.9744 | 15000 | 7.3989 | 7.6054 | 0.4314 |
17.0394 | 16000 | 7.3833 | 7.6654 | 0.4163 |
18.1044 | 17000 | 7.3669 | 7.7186 | 0.3967 |
19.1693 | 18000 | 7.3519 | 7.7653 | 0.3779 |
20.2343 | 19000 | 7.3349 | 7.8356 | 0.3651 |
21.2993 | 20000 | 7.3191 | 7.8772 | 0.3495 |
22.3642 | 21000 | 7.3032 | 7.9346 | 0.3412 |
23.4292 | 22000 | 7.2873 | 7.9624 | 0.3231 |
24.4941 | 23000 | 7.2718 | 8.0169 | 0.3161 |
25.5591 | 24000 | 7.2556 | 8.0633 | 0.3050 |
26.6241 | 25000 | 7.2425 | 8.1021 | 0.2958 |
27.6890 | 26000 | 7.2278 | 8.1563 | 0.2954 |
28.7540 | 27000 | 7.2124 | 8.1955 | 0.2882 |
29.8190 | 28000 | 7.2014 | 8.2234 | 0.2821 |
30.8839 | 29000 | 7.1938 | 8.2447 | 0.2792 |
31.9489 | 30000 | 7.1811 | 8.2609 | 0.2799 |
32.0 | 30048 | - | - | 0.2722 |
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.0
- Transformers: 4.35.0
- PyTorch: 2.1.0a0+4136153
- Accelerate: 0.30.1
- Datasets: 2.14.1
- Tokenizers: 0.14.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for gkudirka/crash_encoder1-sts
Base model
distilbert/distilbert-base-uncasedEvaluation results
- Pearson Cosine on sts devself-reported0.271
- Spearman Cosine on sts devself-reported0.280
- Pearson Manhattan on sts devself-reported0.229
- Spearman Manhattan on sts devself-reported0.254
- Pearson Euclidean on sts devself-reported0.230
- Spearman Euclidean on sts devself-reported0.255
- Pearson Dot on sts devself-reported0.213
- Spearman Dot on sts devself-reported0.190
- Pearson Max on sts devself-reported0.271
- Spearman Max on sts devself-reported0.280