gkudirka commited on
Commit
f46eb21
1 Parent(s): 92e843a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:100K<n<1M
9
+ - loss:CoSENTLoss
10
+ metrics:
11
+ - pearson_cosine
12
+ - spearman_cosine
13
+ - pearson_manhattan
14
+ - spearman_manhattan
15
+ - pearson_euclidean
16
+ - spearman_euclidean
17
+ - pearson_dot
18
+ - spearman_dot
19
+ - pearson_max
20
+ - spearman_max
21
+ base_model: distilbert/distilbert-base-uncased
22
+ widget:
23
+ - source_sentence: T L 2 DUMMY CHEST LAT WIDEBAND 90 Deg Front 2020 CX482 G-S
24
+ sentences:
25
+ - T L F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2020.5 U625 G-S
26
+ - T L F DUMMY HEAD CG LAT WIDEBAND Static Airbag OOP Test 2025 CX430 G-S
27
+ - T R F DUMMY PELVIS LAT WIDEBAND 90 Deg Frontal Impact Simulation 2026 P800 G-S
28
+ - source_sentence: T L F DUMMY CHEST LONG WIDEBAND 90 Deg Front 2022 U553 G-S
29
+ sentences:
30
+ - T R F TORSO BELT AT D RING LOAD WIDEBAND 90 Deg Front 2022 U553 LBF
31
+ - T L F DUMMY L UP TIBIA MY LOAD WIDEBAND 90 Deg Front 2015 P552 IN-LBS
32
+ - T R F DUMMY R UP TIBIA FX LOAD WIDEBAND 30 Deg Front Angular Left 2022 U554 LBF
33
+ - source_sentence: T R F DUMMY PELVIS LAT WIDEBAND 90 Deg Front 2019 D544 G-S
34
+ sentences:
35
+ - T L F DUMMY PELVIS LAT WIDEBAND 90 Deg Front 2015 P552 G-S
36
+ - T L LOWER CONTROL ARM VERT WIDEBAND Left Side Drop Test 2024.5 P702 G-S
37
+ - F BARRIER PLATE 11030 SZ D FX LOAD WIDEBAND 90 Deg Front 2015 P552 LBF
38
+ - source_sentence: T ENGINE ENGINE TOP LAT WIDEBAND 90 Deg Front 2015 P552 G-S
39
+ sentences:
40
+ - T R ENGINE TRANS BOTTOM LAT WIDEBAND 90 Deg Front 2015 P552 G-S
41
+ - F BARRIER PLATE 09030 SZ D FX LOAD WIDEBAND 90 Deg Front 2015 P552 LBF
42
+ - T R F DUMMY NECK UPPER MX LOAD WIDEBAND 90 Deg Front 2022 U554 IN-LBS
43
+ - source_sentence: T L F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2020 CX482 G-S
44
+ sentences:
45
+ - T R F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2025 V363N G-S
46
+ - T R F DUMMY HEAD CG VERT WIDEBAND VIA Linear Impact Test 2021 C727 G-S
47
+ - T L F DUMMY T1 VERT WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2026 P800 G-S
48
+ pipeline_tag: sentence-similarity
49
+ model-index:
50
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: sts dev
57
+ type: sts-dev
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: 0.27051173706186693
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: 0.2798593637893599
64
+ name: Spearman Cosine
65
+ - type: pearson_manhattan
66
+ value: 0.228702027931258
67
+ name: Pearson Manhattan
68
+ - type: spearman_manhattan
69
+ value: 0.25353345676390787
70
+ name: Spearman Manhattan
71
+ - type: pearson_euclidean
72
+ value: 0.23018017587211453
73
+ name: Pearson Euclidean
74
+ - type: spearman_euclidean
75
+ value: 0.2550481010151111
76
+ name: Spearman Euclidean
77
+ - type: pearson_dot
78
+ value: 0.2125353301405465
79
+ name: Pearson Dot
80
+ - type: spearman_dot
81
+ value: 0.1902748420981738
82
+ name: Spearman Dot
83
+ - type: pearson_max
84
+ value: 0.27051173706186693
85
+ name: Pearson Max
86
+ - type: spearman_max
87
+ value: 0.2798593637893599
88
+ name: Spearman Max
89
+ - type: pearson_cosine
90
+ value: 0.26319176781258086
91
+ name: Pearson Cosine
92
+ - type: spearman_cosine
93
+ value: 0.2721909587247752
94
+ name: Spearman Cosine
95
+ - type: pearson_manhattan
96
+ value: 0.21766215319708615
97
+ name: Pearson Manhattan
98
+ - type: spearman_manhattan
99
+ value: 0.2439514548051345
100
+ name: Spearman Manhattan
101
+ - type: pearson_euclidean
102
+ value: 0.2195389492634635
103
+ name: Pearson Euclidean
104
+ - type: spearman_euclidean
105
+ value: 0.24629153092425862
106
+ name: Spearman Euclidean
107
+ - type: pearson_dot
108
+ value: 0.21073878591545503
109
+ name: Pearson Dot
110
+ - type: spearman_dot
111
+ value: 0.1864889259868287
112
+ name: Spearman Dot
113
+ - type: pearson_max
114
+ value: 0.26319176781258086
115
+ name: Pearson Max
116
+ - type: spearman_max
117
+ value: 0.2721909587247752
118
+ name: Spearman Max
119
+ ---
120
+
121
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
122
+
123
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
124
+
125
+ ## Model Details
126
+
127
+ ### Model Description
128
+ - **Model Type:** Sentence Transformer
129
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
130
+ - **Maximum Sequence Length:** 512 tokens
131
+ - **Output Dimensionality:** 768 tokens
132
+ - **Similarity Function:** Cosine Similarity
133
+ <!-- - **Training Dataset:** Unknown -->
134
+ <!-- - **Language:** Unknown -->
135
+ <!-- - **License:** Unknown -->
136
+
137
+ ### Model Sources
138
+
139
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
140
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
141
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
142
+
143
+ ### Full Model Architecture
144
+
145
+ ```
146
+ SentenceTransformer(
147
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
148
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
149
+ )
150
+ ```
151
+
152
+ ## Usage
153
+
154
+ ### Direct Usage (Sentence Transformers)
155
+
156
+ First install the Sentence Transformers library:
157
+
158
+ ```bash
159
+ pip install -U sentence-transformers
160
+ ```
161
+
162
+ Then you can load this model and run inference.
163
+ ```python
164
+ from sentence_transformers import SentenceTransformer
165
+
166
+ # Download from the 🤗 Hub
167
+ model = SentenceTransformer("sentence_transformers_model_id")
168
+ # Run inference
169
+ sentences = [
170
+ 'T L F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2020 CX482 G-S',
171
+ 'T R F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2025 V363N G-S',
172
+ 'T R F DUMMY HEAD CG VERT WIDEBAND VIA Linear Impact Test 2021 C727 G-S',
173
+ ]
174
+ embeddings = model.encode(sentences)
175
+ print(embeddings.shape)
176
+ # [3, 768]
177
+
178
+ # Get the similarity scores for the embeddings
179
+ similarities = model.similarity(embeddings, embeddings)
180
+ print(similarities.shape)
181
+ # [3, 3]
182
+ ```
183
+
184
+ <!--
185
+ ### Direct Usage (Transformers)
186
+
187
+ <details><summary>Click to see the direct usage in Transformers</summary>
188
+
189
+ </details>
190
+ -->
191
+
192
+ <!--
193
+ ### Downstream Usage (Sentence Transformers)
194
+
195
+ You can finetune this model on your own dataset.
196
+
197
+ <details><summary>Click to expand</summary>
198
+
199
+ </details>
200
+ -->
201
+
202
+ <!--
203
+ ### Out-of-Scope Use
204
+
205
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
206
+ -->
207
+
208
+ ## Evaluation
209
+
210
+ ### Metrics
211
+
212
+ #### Semantic Similarity
213
+ * Dataset: `sts-dev`
214
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
215
+
216
+ | Metric | Value |
217
+ |:--------------------|:-----------|
218
+ | pearson_cosine | 0.2705 |
219
+ | **spearman_cosine** | **0.2799** |
220
+ | pearson_manhattan | 0.2287 |
221
+ | spearman_manhattan | 0.2535 |
222
+ | pearson_euclidean | 0.2302 |
223
+ | spearman_euclidean | 0.255 |
224
+ | pearson_dot | 0.2125 |
225
+ | spearman_dot | 0.1903 |
226
+ | pearson_max | 0.2705 |
227
+ | spearman_max | 0.2799 |
228
+
229
+ #### Semantic Similarity
230
+ * Dataset: `sts-dev`
231
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
232
+
233
+ | Metric | Value |
234
+ |:--------------------|:-----------|
235
+ | pearson_cosine | 0.2632 |
236
+ | **spearman_cosine** | **0.2722** |
237
+ | pearson_manhattan | 0.2177 |
238
+ | spearman_manhattan | 0.244 |
239
+ | pearson_euclidean | 0.2195 |
240
+ | spearman_euclidean | 0.2463 |
241
+ | pearson_dot | 0.2107 |
242
+ | spearman_dot | 0.1865 |
243
+ | pearson_max | 0.2632 |
244
+ | spearman_max | 0.2722 |
245
+
246
+ <!--
247
+ ## Bias, Risks and Limitations
248
+
249
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
250
+ -->
251
+
252
+ <!--
253
+ ### Recommendations
254
+
255
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
256
+ -->
257
+
258
+ ## Training Details
259
+
260
+ ### Training Dataset
261
+
262
+ #### Unnamed Dataset
263
+
264
+
265
+ * Size: 481,114 training samples
266
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
267
+ * Approximate statistics based on the first 1000 samples:
268
+ | | sentence1 | sentence2 | score |
269
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
270
+ | type | string | string | float |
271
+ | details | <ul><li>min: 16 tokens</li><li>mean: 32.14 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 32.62 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
272
+ * Samples:
273
+ | sentence1 | sentence2 | score |
274
+ |:------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:--------------------------------|
275
+ | <code>T L C PLR SM SCS L2 HY REF 053 LAT WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2018 P558 G-S</code> | <code>T PCM PWR POWER TO PCM VOLT 2 SEC WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2020 V363N VOLTS</code> | <code>0.5198143220305642</code> |
276
+ | <code>T L F DUMMY L_FEMUR MX LOAD WIDEBAND 90 Deg Frontal Impact Simulation MY2025 U717 IN-LBS</code> | <code>B L FRAME AT No 1 X MEM LAT WIDEBAND Inline 25% Left Front Offset Vehicle to Vehicle 2021 P702 G-S</code> | <code>0.5214072221695696</code> |
277
+ | <code>T R F DOOR REAR OF SEAT H PT LAT WIDEBAND 75 Deg Oblique Right Side 10 in. Pole 2015 P552 G-S</code> | <code>T SCS R2 HY BOS A12 008 TAP RIGHT C PILLAR VOLT WIDEBAND 30 Deg Front Angular Right 2021 CX727 VOLTS</code> | <code>0.322173496575591</code> |
278
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
279
+ ```json
280
+ {
281
+ "scale": 20.0,
282
+ "similarity_fct": "pairwise_cos_sim"
283
+ }
284
+ ```
285
+
286
+ ### Evaluation Dataset
287
+
288
+ #### Unnamed Dataset
289
+
290
+
291
+ * Size: 103,097 evaluation samples
292
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
293
+ * Approximate statistics based on the first 1000 samples:
294
+ | | sentence1 | sentence2 | score |
295
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
296
+ | type | string | string | float |
297
+ | details | <ul><li>min: 17 tokens</li><li>mean: 31.98 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 31.96 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
298
+ * Samples:
299
+ | sentence1 | sentence2 | score |
300
+ |:----------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
301
+ | <code>T R F DUMMY NECK UPPER MZ LOAD WIDEBAND 90 Deg Frontal Impact Simulation 2026 GENERIC IN-LBS</code> | <code>T R ROCKER AT C PILLAR LAT WIDEBAND 90 Deg Front 2021 P702 G-S</code> | <code>0.5234504780172093</code> |
302
+ | <code>T L ROCKER AT B_PILLAR VERT WIDEBAND 90 Deg Front 2024.5 P702 G-S</code> | <code>T RCM BTWN SEATS LOW G Z RCM C1 LZ ALV RC7 003 VOLT WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2018 P558 VOLTS</code> | <code>0.36805699821563936</code> |
303
+ | <code>T R FRAME AT C_PILLAR LONG WIDEBAND 90 Deg Left Side IIHS MDB to Vehicle 2024.5 P702 G-S</code> | <code>T L F LAP BELT AT ANCHOR LOAD WIDEBAND 90 DEG / LEFT SIDE DECEL-3G 2021 P702 LBF</code> | <code>0.5309750606095435</code> |
304
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
305
+ ```json
306
+ {
307
+ "scale": 20.0,
308
+ "similarity_fct": "pairwise_cos_sim"
309
+ }
310
+ ```
311
+
312
+ ### Training Hyperparameters
313
+ #### Non-Default Hyperparameters
314
+
315
+ - `per_device_train_batch_size`: 64
316
+ - `per_device_eval_batch_size`: 64
317
+ - `num_train_epochs`: 32
318
+ - `warmup_ratio`: 0.1
319
+ - `fp16`: True
320
+
321
+ #### All Hyperparameters
322
+ <details><summary>Click to expand</summary>
323
+
324
+ - `overwrite_output_dir`: False
325
+ - `do_predict`: False
326
+ - `prediction_loss_only`: True
327
+ - `per_device_train_batch_size`: 64
328
+ - `per_device_eval_batch_size`: 64
329
+ - `per_gpu_train_batch_size`: None
330
+ - `per_gpu_eval_batch_size`: None
331
+ - `gradient_accumulation_steps`: 1
332
+ - `eval_accumulation_steps`: None
333
+ - `learning_rate`: 5e-05
334
+ - `weight_decay`: 0.0
335
+ - `adam_beta1`: 0.9
336
+ - `adam_beta2`: 0.999
337
+ - `adam_epsilon`: 1e-08
338
+ - `max_grad_norm`: 1.0
339
+ - `num_train_epochs`: 32
340
+ - `max_steps`: -1
341
+ - `lr_scheduler_type`: linear
342
+ - `warmup_ratio`: 0.1
343
+ - `warmup_steps`: 0
344
+ - `log_level`: passive
345
+ - `log_level_replica`: warning
346
+ - `log_on_each_node`: True
347
+ - `logging_nan_inf_filter`: True
348
+ - `save_safetensors`: True
349
+ - `save_on_each_node`: False
350
+ - `no_cuda`: False
351
+ - `use_cpu`: False
352
+ - `use_mps_device`: False
353
+ - `seed`: 42
354
+ - `data_seed`: None
355
+ - `jit_mode_eval`: False
356
+ - `use_ipex`: False
357
+ - `bf16`: False
358
+ - `fp16`: True
359
+ - `fp16_opt_level`: O1
360
+ - `half_precision_backend`: auto
361
+ - `bf16_full_eval`: False
362
+ - `fp16_full_eval`: False
363
+ - `tf32`: None
364
+ - `local_rank`: 7
365
+ - `ddp_backend`: None
366
+ - `tpu_num_cores`: None
367
+ - `tpu_metrics_debug`: False
368
+ - `debug`: []
369
+ - `dataloader_drop_last`: True
370
+ - `dataloader_num_workers`: 0
371
+ - `past_index`: -1
372
+ - `disable_tqdm`: False
373
+ - `remove_unused_columns`: True
374
+ - `label_names`: None
375
+ - `load_best_model_at_end`: False
376
+ - `ignore_data_skip`: False
377
+ - `fsdp`: []
378
+ - `fsdp_min_num_params`: 0
379
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}
380
+ - `fsdp_transformer_layer_cls_to_wrap`: None
381
+ - `deepspeed`: None
382
+ - `label_smoothing_factor`: 0.0
383
+ - `optim`: adamw_torch
384
+ - `optim_args`: None
385
+ - `adafactor`: False
386
+ - `group_by_length`: False
387
+ - `length_column_name`: length
388
+ - `ddp_find_unused_parameters`: None
389
+ - `ddp_bucket_cap_mb`: None
390
+ - `ddp_broadcast_buffers`: False
391
+ - `dataloader_pin_memory`: True
392
+ - `skip_memory_metrics`: True
393
+ - `use_legacy_prediction_loop`: False
394
+ - `push_to_hub`: False
395
+ - `resume_from_checkpoint`: None
396
+ - `hub_model_id`: None
397
+ - `hub_strategy`: every_save
398
+ - `hub_private_repo`: False
399
+ - `hub_always_push`: False
400
+ - `gradient_checkpointing`: False
401
+ - `gradient_checkpointing_kwargs`: None
402
+ - `include_inputs_for_metrics`: False
403
+ - `fp16_backend`: auto
404
+ - `push_to_hub_model_id`: None
405
+ - `push_to_hub_organization`: None
406
+ - `mp_parameters`:
407
+ - `auto_find_batch_size`: False
408
+ - `full_determinism`: False
409
+ - `torchdynamo`: None
410
+ - `ray_scope`: last
411
+ - `ddp_timeout`: 1800
412
+ - `torch_compile`: False
413
+ - `torch_compile_backend`: None
414
+ - `torch_compile_mode`: None
415
+ - `dispatch_batches`: None
416
+ - `split_batches`: False
417
+ - `include_tokens_per_second`: False
418
+ - `neftune_noise_alpha`: None
419
+ - `batch_sampler`: batch_sampler
420
+ - `multi_dataset_batch_sampler`: proportional
421
+
422
+ </details>
423
+
424
+ ### Training Logs
425
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
426
+ |:-------:|:-----:|:-------------:|:------:|:-----------------------:|
427
+ | 1.0650 | 1000 | 7.6111 | 7.5503 | 0.4087 |
428
+ | 2.1299 | 2000 | 7.5359 | 7.5420 | 0.4448 |
429
+ | 3.1949 | 3000 | 7.5232 | 7.5292 | 0.4622 |
430
+ | 4.2599 | 4000 | 7.5146 | 7.5218 | 0.4779 |
431
+ | 5.3248 | 5000 | 7.5045 | 7.5200 | 0.4880 |
432
+ | 6.3898 | 6000 | 7.4956 | 7.5191 | 0.4934 |
433
+ | 7.4547 | 7000 | 7.4873 | 7.5170 | 0.4967 |
434
+ | 8.5197 | 8000 | 7.4781 | 7.5218 | 0.4931 |
435
+ | 9.5847 | 9000 | 7.4686 | 7.5257 | 0.4961 |
436
+ | 10.6496 | 10000 | 7.4596 | 7.5327 | 0.4884 |
437
+ | 11.7146 | 11000 | 7.4498 | 7.5403 | 0.4860 |
438
+ | 12.7796 | 12000 | 7.4386 | 7.5507 | 0.4735 |
439
+ | 13.8445 | 13000 | 7.4253 | 7.5651 | 0.4660 |
440
+ | 14.9095 | 14000 | 7.4124 | 7.5927 | 0.4467 |
441
+ | 15.9744 | 15000 | 7.3989 | 7.6054 | 0.4314 |
442
+ | 17.0394 | 16000 | 7.3833 | 7.6654 | 0.4163 |
443
+ | 18.1044 | 17000 | 7.3669 | 7.7186 | 0.3967 |
444
+ | 19.1693 | 18000 | 7.3519 | 7.7653 | 0.3779 |
445
+ | 20.2343 | 19000 | 7.3349 | 7.8356 | 0.3651 |
446
+ | 21.2993 | 20000 | 7.3191 | 7.8772 | 0.3495 |
447
+ | 22.3642 | 21000 | 7.3032 | 7.9346 | 0.3412 |
448
+ | 23.4292 | 22000 | 7.2873 | 7.9624 | 0.3231 |
449
+ | 24.4941 | 23000 | 7.2718 | 8.0169 | 0.3161 |
450
+ | 25.5591 | 24000 | 7.2556 | 8.0633 | 0.3050 |
451
+ | 26.6241 | 25000 | 7.2425 | 8.1021 | 0.2958 |
452
+ | 27.6890 | 26000 | 7.2278 | 8.1563 | 0.2954 |
453
+ | 28.7540 | 27000 | 7.2124 | 8.1955 | 0.2882 |
454
+ | 29.8190 | 28000 | 7.2014 | 8.2234 | 0.2821 |
455
+ | 30.8839 | 29000 | 7.1938 | 8.2447 | 0.2792 |
456
+ | 31.9489 | 30000 | 7.1811 | 8.2609 | 0.2799 |
457
+ | 32.0 | 30048 | - | - | 0.2722 |
458
+
459
+
460
+ ### Framework Versions
461
+ - Python: 3.10.6
462
+ - Sentence Transformers: 3.0.0
463
+ - Transformers: 4.35.0
464
+ - PyTorch: 2.1.0a0+4136153
465
+ - Accelerate: 0.30.1
466
+ - Datasets: 2.14.1
467
+ - Tokenizers: 0.14.1
468
+
469
+ ## Citation
470
+
471
+ ### BibTeX
472
+
473
+ #### Sentence Transformers
474
+ ```bibtex
475
+ @inproceedings{reimers-2019-sentence-bert,
476
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
477
+ author = "Reimers, Nils and Gurevych, Iryna",
478
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
479
+ month = "11",
480
+ year = "2019",
481
+ publisher = "Association for Computational Linguistics",
482
+ url = "https://arxiv.org/abs/1908.10084",
483
+ }
484
+ ```
485
+
486
+ #### CoSENTLoss
487
+ ```bibtex
488
+ @online{kexuefm-8847,
489
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
490
+ author={Su Jianlin},
491
+ year={2022},
492
+ month={Jan},
493
+ url={https://kexue.fm/archives/8847},
494
+ }
495
+ ```
496
+
497
+ <!--
498
+ ## Glossary
499
+
500
+ *Clearly define terms in order to be accessible across audiences.*
501
+ -->
502
+
503
+ <!--
504
+ ## Model Card Authors
505
+
506
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
507
+ -->
508
+
509
+ <!--
510
+ ## Model Card Contact
511
+
512
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
513
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./encoder/training_stsbenchmark_distilbert-base-uncased-2024-06-08_01-23-53/final",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.0",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.35.0",
5
+ "pytorch": "2.1.0a0+4136153"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:861fdc3f9bf4c0aa14f6ccaa4a04312452eee70b76823a8faf03c02ddac515a8
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "DistilBertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff